

Anti-γ-Catenin (Tyr-550), Phosphospecific Antibody Catalog # AN1682

Specification

Anti-γ-Catenin (Tyr-550), Phosphospecific Antibody - Product Information

Application WB
Primary Accession P14923
Reactivity Bovine
Host Rabbit

Clonality Rabbit Polyclonal

Isotype IgG
Calculated MW 81745

Anti-y-Catenin (Tyr-550), Phosphospecific Antibody - Additional Information

Gene ID 3728

Other Names

Plakoglobin, JUP, Desmoplakin III, Desmoplakin-3, catenin gamma1

Target/Specificity

Plakoglobin (γ -Catenin) is a catenin family member identified as a component of desmosomes. γ -Catenin has high homology to β -catenin and, like β -catenin, it can associate with the cadherins, E-cadherin and N-cadherin. One molecule of α -catenin and at least one molecule of β -catenin and γ -Catenin simultaneously bind to a single cadherin molecule. A 19-amino acid sequence of desmoglein was found to be critical for binding of γ -Catenin. Similar catenin-binding domains found in cadherins, suggest a common mechanism for γ -Catenin localization to both adherens junctions and desmosomes. Phosphorylation of tyrosine residues in γ -Catenin can modify its interactions with other proteins. Phosphorylation of tyrosine 644 decreases γ -Catenin association with α -catenin, but increases binding to desmoplakin. Fer kinase can phosphorylate tyrosine 550, which increases γ -Catenin binding to α -catenin. Thus, tyrosine phosphorylation may be important for regulation of γ -Catenin protein-protein interactions within desmosomal complexes.

Dilution

WB~~1:1000

Format

Antigen Affinity Purified

Storage

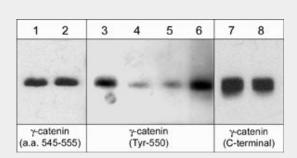
Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

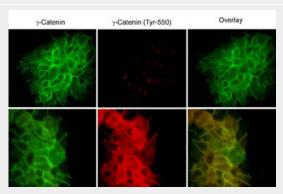
Anti-γ-Catenin (Tyr-550), Phosphospecific Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Shipping

Blue Ice



Anti-y-Catenin (Tyr-550), Phosphospecific Antibody - Protocols


Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

Anti-y-Catenin (Tyr-550), Phosphospecific Antibody - Images

Western blot analysis of anti- γ -Catenin (C-terminal) immunoprecipitates from pervanadate-treated A431. The immunoprecipitates were untreated (lanes 1,3,7) or treated with alkaline phosphatase (lanes 2,4,8). The blots were probed with γ -Catenin (a.a. 545-555), γ -Catenin (Tyr-550) or γ -Catenin (C-terminal) antibodies. The anti- γ -Catenin (Tyr-550) was used in the presence of γ -Catenin (Tyr-550) (lane 5) or γ -Catenin (Tyr-644) (lane 6) peptides.

Immunocytochemical labeling of phosphorylated γ -Catenin in control (Top) and pervanadate-treated (Bottom) A431 cells. The cells were co-labeled with mouse monoclonal γ -Catenin (CM1111) or rabbit polyclonal γ -Catenin (Tyr-550) antibodies, then the antibodies were detected using appropriate secondary antibodies conjugated to Cy2 or Cy3.

Anti-y-Catenin (Tyr-550), Phosphospecific Antibody - Background

Plakoglobin (γ -Catenin) is a catenin family member identified as a component of desmosomes. γ -Catenin has high homology to β -catenin and, like β -catenin, it can associate with the cadherins, E-cadherin and N-cadherin. One molecule of α -catenin and at least one molecule of β -catenin and γ -Catenin simultaneously bind to a single cadherin molecule. A 19-amino acid sequence of desmoglein was found to be critical for binding of γ -Catenin. Similar catenin-binding domains found in cadherins, suggest a common mechanism for γ -Catenin localization to both adherens junctions and desmosomes. Phosphorylation of tyrosine residues in γ -Catenin can modify its interactions with

Tel: 858.875.1900 Fax: 858.875.1999

other proteins. Phosphorylation of tyrosine 644 decreases γ -Catenin association with α -catenin, but increases binding to desmoplakin. Fer kinase can phosphorylate tyrosine 550, which increases γ -Catenin binding to α -catenin. Thus, tyrosine phosphorylation may be important for regulation of y-Catenin protein-protein interactions within desmosomal complexes.