

Anti-ERK1 (C-terminal region) Antibody

Catalog # AN1783

Specification

Anti-ERK1 (C-terminal region) Antibody - Product Information

Application Primary Accession Reactivity Host Clonality Isotype Calculated MW	WB, IHC <u>P28482</u> Bovine Mouse Mouse Monoclonal IgG1 41390
Calculated MW	41390

Anti-ERK1 (C-terminal region) Antibody - Additional Information

Gene ID Other Names ERK, p42, p44, MAPK

5594

Target/Specificity

Mitogen-activated protein kinases (MAPKs) are a widely conserved family of serine/threonine protein kinases involved in many cellular programs such as cell proliferation, differentiation, motility, and death. The ERK1/2 (p44/42) signaling pathway can be activated in response to a diverse range of extracellular stimuli including mitogens, growth factors, and cytokines. Upon stimulation, a sequential three-part protein kinase cascade is initiated, consisting of a MAP kinase kinase kinase (MAPKKK), a MAP kinase kinase (MAPKK), and a MAP kinase (MAPKK). Multiple ERK1/2 MAPKKKs have been identified, including members of the Raf family as well as Mos and Tpl2/Cot. MEK1 and MEK2 are the primary MAPKKs in this pathway. MEK1 and MEK2 activate ERK1 and ERK2 through phosphorylation of activation loop residues Thr-202/Tyr-204 and Thr-185/Tyr-187, respectively. ERK1/2 are negatively regulated by a family of dual-specificity (Thr/Tyr) MAPK phosphatases. Several downstream targets of ERK1/2 have been identified, including p90RSK and the transcription factor Elk-1.

Dilution WB~~1:1000 IHC~~1:100~500

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

Anti-ERK1 (C-terminal region) Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Shipping Blue Ice

Anti-ERK1 (C-terminal region) Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- <u>Blocking Peptides</u>
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

Anti-ERK1 (C-terminal region) Antibody - Images

Western blot analysis of human A431 epithelial cells untreated (lanes 1 & 4) or treated with 100 nM calyculin A for 30 min. (lanes 2 & 5) or 100 ng/ml EGF for 60 min. (lanes 3 & 6). The blots were probed with anti-ERK1 (C-terminal region) (lanes 1, 2, & 3) or anti-ERK1/2 (Thr-202/Tyr-204) (lanes 4, 5, & 6).

Immunocytochemical labeling of ERK1 in paraformaldehyde-fixed and NP-40-permeabilized rabbit spleen fibroblasts. The cells were labeled with mouse monoclonal ERK1 (C-terminal region) and detected using appropriate secondary antibodies conjugated to Cy3.

Anti-ERK1 (C-terminal region) Antibody - Background

Mitogen-activated protein kinases (MAPKs) are a widely conserved family of serine/threonine protein kinases involved in many cellular programs such as cell proliferation, differentiation,

motility, and death. The ERK1/2 (p44/42) signaling pathway can be activated in response to a diverse range of extracellular stimuli including mitogens, growth factors, and cytokines. Upon stimulation, a sequential three-part protein kinase cascade is initiated, consisting of a MAP kinase kinase kinase (MAPKKK), a MAP kinase kinase (MAPKK), and a MAP kinase (MAPK). Multiple ERK1/2 MAPKKKs have been identified, including members of the Raf family as well as Mos and Tpl2/Cot. MEK1 and MEK2 are the primary MAPKKs in this pathway. MEK1 and MEK2 activate ERK1 and ERK2 through phosphorylation of activation loop residues Thr-202/Tyr-204 and Thr-185/Tyr-187, respectively. ERK1/2 are negatively regulated by a family of dual-specificity (Thr/Tyr) MAPK phosphatases. Several downstream targets of ERK1/2 have been identified, including p90RSK and the transcription factor Elk-1.