

Anti-FXYD5/Dysadherin (Extracellular region) Antibody
Catalog # AN1799**Specification****Anti-FXYD5/Dysadherin (Extracellular region) Antibody - Product Information**

Application	WB, IHC
Primary Accession	Q96DB9
Host	Mouse
Clonality	Mouse Monoclonal
Isotype	IgG1
Calculated MW	19472

Anti-FXYD5/Dysadherin (Extracellular region) Antibody - Additional Information**Gene ID** 53827**Other Names**

FXYD domain-containing ion transport regulator 5, Dysadherin, FXYD5, DYSAD, IWU1, HSPC113, UNQ2561/PRO6241

Target/Specificity

The Na⁺/K⁺ ATPase is an integral membrane heterodimer belonging to the P-type ATPase family. This ion channel uses the energy derived from ATP hydrolysis to maintain membrane potential by driving Na⁺ export and K⁺ import across the plasma membrane. It is composed of a large catalytic α subunit and a membrane-spanning auxiliary β subunit. In humans, the Na⁺/K⁺ ATPase is a binary complex of an α subunit that has four isoforms (α1-α4) and a β-subunit that has three isoforms (β1, β2, β3). In addition, the Na⁺/K⁺ ATPase can interact with a group of regulatory subunits, the FXYD type I membrane protein family. This family contains FXYD1-7, and each member contains the conserved F-X-Y-D motif in the trans-membrane domain. FXYD5 (Dysadherin) is expressed in a variety of cells and tissue, as well as upregulated in carcinomas. FXYD5 contains extensive O-glycosylation, and is expressed as molecules that range from 35 to 55 kDa depending on cell type. FXYD5 can reduce E-cadherin mediated cell-cell adhesions, and may be involved in carcinogenesis.

Dilution

WB~~1:1000

IHC~~1:100~500

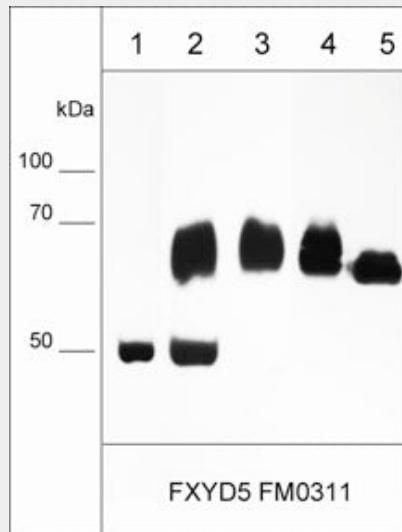
Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

Anti-FXYD5/Dysadherin (Extracellular region) Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Shipping


Blue Ice

Anti-FXYD5/Dysadherin (Extracellular region) Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- [Western Blot](#)
- [Blocking Peptides](#)
- [Dot Blot](#)
- [Immunohistochemistry](#)
- [Immunofluorescence](#)
- [Immunoprecipitation](#)
- [Flow Cytometry](#)
- [Cell Culture](#)

Anti-FXYD5/Dysadherin (Extracellular region) Antibody - Images

Immunocytochemical labeling of FXYD5 in paraformaldehyde fixed human MDA-MB-231 cells. The cells were labeled with mouse monoclonal FXYD5 (FM0311). The antibody was detected using goat anti-mouse Ig DyLight® 594.

Anti-FXYD5/Dysadherin (Extracellular region) Antibody - Background

The Na⁺/K⁺ ATPase is an integral membrane heterodimer belonging to the P-type ATPase family. This ion channel uses the energy derived from ATP hydrolysis to maintain membrane potential by driving Na⁺ export and K⁺ import across the plasma membrane. It is composed of a large catalytic α subunit and a membrane-spanning auxiliary β subunit. In humans, the Na⁺/K⁺ ATPase is a binary complex of an α subunit that has four isoforms ($\alpha 1-\alpha 4$) and a β -subunit that has three isoforms ($\beta 1$, $\beta 2$, $\beta 3$). In addition, the Na⁺/K⁺ ATPase can interact with a group of regulatory subunits, the FXYD type I membrane protein family. This family contains FXYD1-7, and each member contains the conserved F-X-Y-D motif in the trans-membrane domain. FXYD5 (Dysadherin) is expressed in a variety of cells and tissue, as well as upregulated in carcinomas. FXYD5 contains extensive O-glycosylation, and is expressed as molecules that range from 35 to 55 kDa depending on cell type. FXYD5 can reduce E-cadherin mediated cell-cell adhesions, and may be involved in carcinogenesis.