

Anti-I κ B α (C-terminus) Antibody
Catalog # AN1814**Specification****Anti-I κ B α (C-terminus) Antibody - Product Information**

Primary Accession	P25963
Reactivity	Bovine
Host	Rabbit
Clonality	Rabbit Polyclonal
Isotype	IgG
Calculated MW	35609

Anti-I κ B α (C-terminus) Antibody - Additional Information**Gene ID** 4792**Other Names**I κ B, MAD3, I κ kappaBalp α , NFkappaB inhibitor I κ B α **Target/Specificity**

The NF- κ B/Rel transcription factors are present in the cytosol in an inactive state complexed with the inhibitory I κ B proteins. Activation of I κ B α occurs through both serine and tyrosine phosphorylation events. Activation through phosphorylation at Ser-32 and Ser-36 is followed by proteasome-mediated degradation, resulting in the release and nuclear translocation of active NF- κ B. This pathway of I κ B α regulation occurs in response to various NF- κ B-activating agents, such as TNF α , interleukins, LPS, and irradiation. An alternative pathway for I κ B α regulation occurs through tyrosine phosphorylation of Tyr-42 and Tyr-305. Tyr-42 is phosphorylated in response to oxidative stress and growth factors. This phosphorylation can lead to degradation of I κ B α and NF- κ B-activation. In contrast, Tyr-305 phosphorylation by c-Abl has been implicated in I κ B α nuclear translocation and inhibition of NF- κ B-activation. Thus, tyrosine phosphorylation of I κ B α may be an important regulatory mechanism in NF- κ B signaling.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

Anti-I κ B α (C-terminus) Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Shipping

Blue Ice

Anti-I κ B α (C-terminus) Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- [Western Blot](#)
- [Blocking Peptides](#)

- [Dot Blot](#)
- [Immunohistochemistry](#)
- [Immunofluorescence](#)
- [Immunoprecipitation](#)
- [Flow Cytometry](#)
- [Cell Culture](#)

Anti-I κ B α (C-terminus) Antibody - Images

Western blot image of human A431. The Blots were probed with anti-I κ B α (C-term.) polyclonal antibody at a dilution of 1:500 (lane 1), 1:1000 (lane 2), and 1:2000 (lane 3).

Anti-I κ B α (C-terminus) Antibody - Background

The NF- κ B/Rel transcription factors are present in the cytosol in an inactive state complexed with the inhibitory I κ B proteins. Activation of I κ B α occurs through both serine and tyrosine phosphorylation events. Activation through phosphorylation at Ser-32 and Ser-36 is followed by proteasome-mediated degradation, resulting in the release and nuclear translocation of active NF- κ B. This pathway of I κ B α regulation occurs in response to various NF- κ B-activating agents, such as TNF α , interleukins, LPS, and irradiation. An alternative pathway for I κ B α regulation occurs through tyrosine phosphorylation of Tyr-42 and Tyr-305. Tyr-42 is phosphorylated in response to oxidative stress and growth factors. This phosphorylation can lead to degradation of I κ B α and NF- κ B-activation. In contrast, Tyr-305 phosphorylation by c-Abl has been implicated in I κ B α nuclear translocation and inhibition of NF- κ B-activation. Thus, tyrosine phosphorylation of I κ B α may be an important regulatory mechanism in NF- κ B signaling.

Anti-I κ B α (C-terminus) Antibody - Citations

- [Factor L2 ameliorates the Progression of K/BxN Serum-Induced Arthritis by Blocking TLR7 Mediated IRAK4/IKK \$\beta\$ /IRF5 and NF- \$\kappa\$ B Signaling Pathways](#)