

Anti-C-Raf (N-terminal region) Antibody

Catalog # AN1934

Specification

Anti-C-Raf (N-terminal region) Antibody - Product Information

Primary Accession
Reactivity
Bovine
Host
Mouse

Clonality Mouse Monoclonal

Isotype IgG1
Calculated MW 73052

Anti-C-Raf (N-terminal region) Antibody - Additional Information

Gene ID 5894

Other Names Raf1, CRaf

Storage

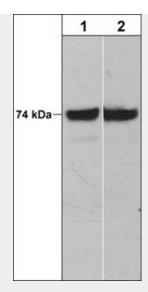
Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

Anti-C-Raf (N-terminal region) Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Shipping

Blue Ice


Anti-C-Raf (N-terminal region) Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

Anti-C-Raf (N-terminal region) Antibody - Images

Western blot of human A431 (lane 1) and Jurkat (lane 2) cells probed with mouse monoclonal anti-C-Raf (N-terminal) antibody at 1:500.

Anti-C-Raf (N-terminal region) Antibody - Background

The Ras-Raf-MAP kinase signaling pathway is involved in control of cell proliferation and differentiation. The Raf kinase family includes A-Raf, B-Raf, and C-Raf. Each family member has three highly conserved regions (CR1-3). The N-terminal CR1 contains the Ras-GTP-binding domain. The CR2 contains a negative regulatory serine residue (C-Raf (S259)/B-Raf(S365)) that may bind 14-3-3 proteins. The CR3 is the catalytic domain that contains phosphorylation sites for Raf-regulating enzymes within two segments, the N-region and the activation segment. Activation of C-Raf involves phosphorylation at many sites including Ser-338, Tyr-341, and multiple catalytic domain sites. EGF receptor activation leads to phosphorylation of Ser-471, which is critical for C-Raf kinase activity and is required for interaction with MEK. In B-Raf, the corresponding conserved site is Ser-578, and mutation of this residue to alanine produces an inactivate kinase. Thus, this Raf phosphorylation site may be critical for kinase activity and may be important for MEK binding and activation