

# Anti-βIII-Tubulin (C-terminus) Antibody

Catalog # AN2003

#### Specification

# Anti-βIII-Tubulin (C-terminus) Antibody - Product Information

#### Anti-βIII-Tubulin (C-terminus) Antibody - Additional Information

Gene ID Other Names TUBB3

**Dilution** WB~~1:1000 IHC~~1:100~500

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

10381

Precautions

Anti- $\beta$ III-Tubulin (C-terminus) Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Shipping Blue Ice

## Anti-βIII-Tubulin (C-terminus) Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- <u>Dot Blot</u>
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

#### Anti-βIII-Tubulin (C-terminus) Antibody - Images





Western blot analysis of mouse brain. The blot was probed with anti-unphosphorylated  $\beta$ III-Tubulin (Ser-444) (lanes 1-3) and anti- $\beta$ III-Tubulin (C-terminus) (lanes 4-6) polyclonal antibodies. Both antibodies were used in the presence of unphosphorylated  $\beta$ III-Tublin (Ser-444) peptide (lanes 2 & 5; TX1815) and phospho- $\beta$ III-Tublin (Ser-444) peptide (lanes 3 & 6; TX1695).



Immunocytochemical labeling in chick dorsal root ganglion neurons using anti-Cofilin (N-terminus; CP1131), anti-Cofilin (Ser-3; CP1151), anti- $\beta$ III-Tubulin (C-terminus; TP1691) and anti- $\beta$ -Tubulin (TM1541) antibodies. (Images provided by Dr. Diane Snow, Department of Anatomy & Neurobiology, University of Kentucky).

## Anti-βIII-Tubulin (C-terminus) Antibody - Background

Microtubules (MTs) are cytoskeletal elements that play an essential role in cell division and cytoplasmic organization. MTs are dynamic polymers of  $\alpha/\beta$ -tubulin heterodimers. At least two populations of MTs, called dynamic and stable according to their rates of turnover, are readily distinguishable in cells. The proteins associated with MTs (MAPs) are among the best-known factors that regulate MT dynamics and stability. In addition, a variety of different post-translational modifications may also regulate MT dynamics and stability. Phosphorylation is one of these modifications and it can occur on serine, threonine, and tyrosine residues in  $\beta$ -Tubulin isoforms. Multiple kinases can phosphorylate Ser-444 at the C-terminus of  $\beta$ III-Tubulin in vitro. Unphosphorylated Ser-444 is upregulated after neuronal maturation and may preferentially occur in assembled MTs. By contrast, Cdk1 phosphorylation of Ser-172 in  $\beta$ -Tubulin occurs in mitotic cells



and may impair tubulin incorporation into microtubules.