

### **CHUK Antibody**

Purified Mouse Monoclonal Antibody Catalog # AO1458a

### **Specification**

## **CHUK Antibody - Product Information**

Application WB, FC, ICC, E

Primary Accession
Reactivity
Human
Host
Clonality
Honoclonal
Isotype
IgG1

Calculated MW 85kDa KDa

**Description** 

This gene encodes a member of the serine/threonine protein kinase family. The encoded protein, a component of a cytokine-activated protein complex that is an inhibitor of the essential transcription factor NF-kappa-B complex, phosphorylates sites that trigger the degradation of the inhibitor via the ubiquination pathway, thereby activating the transcription factor.

### **Immunogen**

Purified recombinant fragment of human CHUK expressed in E. Coli.

### **Formulation**

Ascitic fluid containing 0.03% sodium azide.

### **CHUK Antibody - Additional Information**

#### **Gene ID 1147**

### **Other Names**

Inhibitor of nuclear factor kappa-B kinase subunit alpha, I-kappa-B kinase alpha, IKK-A, IKK-alpha, IkBKA, IkappaB kinase, 2.7.11.10, Conserved helix-loop-helix ubiquitous kinase, I-kappa-B kinase 1, IKK1, Nuclear factor NF-kappa-B inhibitor kinase alpha, NFKBIKA, Transcription factor 16, TCF-16, CHUK, IKKA, TCF16

## **Dilution**

WB~~1/500 - 1/2000 FC~~1/200 - 1/400 ICC~~N/A E~~N/A

# **Storage**

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

#### **Precautions**

CHUK Antibody is for research use only and not for use in diagnostic or therapeutic procedures.



### **CHUK Antibody - Protein Information**

Name CHUK

Synonyms IKKA, TCF16

#### **Function**

Serine kinase that plays an essential role in the NF-kappa-B signaling pathway which is activated by multiple stimuli such as inflammatory cytokines, bacterial or viral products, DNA damages or other cellular stresses (PubMed: <a href="http://www.uniprot.org/citations/18626576" target=" blank">18626576</a>, PubMed:<a href="http://www.uniprot.org/citations/9244310" target=" blank">9244310</a>, PubMed:<a href="http://www.uniprot.org/citations/9252186" target=" blank">9252186</a>, PubMed:<a href="http://www.uniprot.org/citations/9346484" target="blank">9346484</a>). Acts as a part of the canonical IKK complex in the conventional pathway of NF-kappa-B activation and phosphorylates inhibitors of NF-kappa-B on serine residues (PubMed:<a href="http://www.uniprot.org/citations/18626576" target="blank">18626576</a>, PubMed:<a href="http://www.uniprot.org/citations/35952808" target=" blank">35952808</a>, PubMed: <a href="http://www.uniprot.org/citations/9244310" target="blank">9244310</a>, PubMed: <a href="http://www.uniprot.org/citations/9252186" target="blank">9252186</a>, PubMed: <a href="http://www.uniprot.org/citations/9346484" target="blank">9346484</a>). These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the proteasome (PubMed: <a href="http://www.uniprot.org/citations/18626576" target=" blank">18626576</a>, PubMed:<a href="http://www.uniprot.org/citations/9244310" target=" blank">9244310</a>, PubMed:<a href="http://www.uniprot.org/citations/9252186" target="blank">9252186</a>, PubMed:<a href="http://www.uniprot.org/citations/9346484" target="blank">9346484</a>). In turn, free NF-kappa-B is translocated into the nucleus and activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed: <a href="http://www.uniprot.org/citations/18626576" target=" blank">18626576</a>, PubMed:<a href="http://www.uniprot.org/citations/9244310" target="blank">9244310</a>, PubMed:<a href="http://www.uniprot.org/citations/9252186" target=" blank">9252186</a>, PubMed:<a href="http://www.uniprot.org/citations/9346484" target=" blank">9346484</a>). Negatively regulates the pathway by phosphorylating the scaffold protein TAXBP1 and thus promoting the assembly of the A20/TNFAIP3 ubiquitin-editing complex (composed of A20/TNFAIP3, TAX1BP1, and the E3 ligases ITCH and RNF11) (PubMed: <a href="http://www.uniprot.org/citations/21765415" target=" blank">21765415</a>). Therefore, CHUK plays a key role in the negative feedback of NF-kappa-B canonical signaling to limit inflammatory gene activation. As part of the non-canonical pathway of NF-kappa-B activation, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes (PubMed:<a href="http://www.uniprot.org/citations/20501937" target=" blank">20501937</a>). In turn, these complexes regulate genes encoding molecules involved in B-cell survival and lymphoid organogenesis. Also participates in the negative feedback of the non-canonical NF-kappa-B signaling pathway by phosphorylating and destabilizing MAP3K14/NIK. Within the nucleus, phosphorylates CREBBP and consequently increases both its transcriptional and histone acetyltransferase activities (PubMed:<a href="http://www.uniprot.org/citations/17434128" target=" blank">17434128</a>). Modulates chromatin accessibility at NF-kappa-B- responsive promoters by phosphorylating histones H3 at 'Ser-10' that are subsequently acetylated at 'Lys-14' by CREBBP (PubMed:<a href="http://www.uniprot.org/citations/12789342" target=" blank">12789342</a>). Additionally, phosphorylates the CREBBP-interacting protein NCOA3. Also phosphorylates FOXO3 and may regulate this pro-apoptotic transcription factor (PubMed: <a href="http://www.uniprot.org/citations/15084260" target=" blank">15084260</a>). Phosphorylates RIPK1 at 'Ser-25' which represses its kinase activity and consequently prevents TNF-mediated RIPK1-dependent cell death (By similarity). Phosphorylates AMBRA1 following mitophagy induction, promoting AMBRA1 interaction with ATG8 family proteins and its mitophagic activity (PubMed: <a href="http://www.uniprot.org/citations/30217973" target=" blank">30217973</a>).



**Cellular Location** 

Cytoplasm. Nucleus Note=Shuttles between the cytoplasm and the nucleus

**Tissue Location** Widely expressed.

# **CHUK Antibody - Protocols**

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

# **CHUK Antibody - Images**

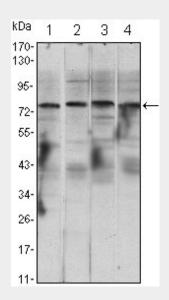



Figure 1: Western blot analysis using CHUK mouse mAb against Raji (1), Jurkat (2), THP-1 (3) and K562 (4) cell lysate.

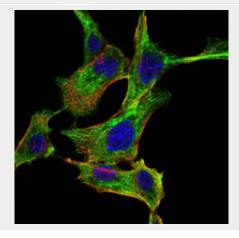





Figure 2: Immunofluorescence analysis of NIH/3T3 cells using CHUK mouse mAb (green). Blue: DRAQ5 fluorescent DNA dye. Red: Actin filaments have been labeled with Alexa Fluor-555 phalloidin.

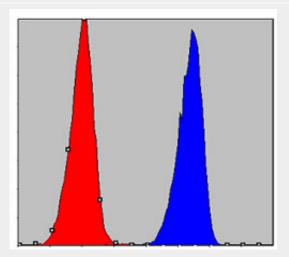



Figure 3: Flow cytometric analysis of A549 cells using CHUK mouse mAb (blue) and negative control (red).

# **CHUK Antibody - References**

1. Mol Cancer. 2010 Jan 5;9:1. 2. J Infect Dis. 2010 May 1;201(9):1371-80.