NQO1 Antibody Purified Mouse Monoclonal Antibody Catalog # AO1642a # **Specification** # **NQ01 Antibody - Product Information** Application WB, IHC, FC, E Primary Accession Reactivity Host Clonality Isotype Calculated MW P15559 Human Mouse Monoclonal IgG1 31kDa KDa **Description** This gene is a member of the NAD(P)H dehydrogenase (quinone) family and encodes a cytoplasmic 2-electron reductase. This FAD-binding protein forms homodimers and reduces quinones to hydroquinones. This protein's enzymatic activity prevents the one electron reduction of quinones that results in the production of radical species. Mutations in this gene have been associated with tardive dyskinesia (TD), an increased risk of hematotoxicity after exposure to benzene, and susceptibility to various forms of cancer. Altered expression of this protein has been seen in many tumors and is also associated with Alzheimer's disease (AD). Alternate transcriptional splice variants, encoding different isoforms, have been characterized. #### **Immunogen** Purified recombinant fragment of human NQO1 expressed in E. Coli.

 /> #### **Formulation** Ascitic fluid containing 0.03% sodium azide.

 # **NQO1** Antibody - Additional Information #### **Gene ID 1728** ### **Other Names** NAD(P)H dehydrogenase [quinone] 1, 1.6.5.2, Azoreductase, DT-diaphorase, DTD, Menadione reductase, NAD(P)H:quinone oxidoreductase 1, Phylloquinone reductase, Quinone reductase 1, QR1, NQO1, DIA4, NMOR1 # **Dilution** WB~~1/500 - 1/2000 IHC~~1/200 - 1/1000 FC~~1/200 - 1/400 E~~1/10000 # Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. #### **Precautions** NQO1 Antibody is for research use only and not for use in diagnostic or therapeutic procedures. # **NQ01** Antibody - Protein Information Name NQO1 {ECO:0000303|PubMed:1657151, ECO:0000312|HGNC:HGNC:2874} #### **Function** Flavin-containing guinone reductase that catalyzes two- electron reduction of guinones to hydroguinones using either NADH or NADPH as electron donors. In a ping-pong kinetic mechanism, the electrons are sequentially transferred from NAD(P)H to flavin cofactor and then from reduced flavin to the guinone, bypassing the formation of semiguinone and reactive oxygen species (By similarity) (PubMed:8999809, PubMed:9271353). Regulates cellular redox state primarily through quinone detoxification. Reduces components of plasma membrane redox system such as coenzyme Q and vitamin quinones, producing antioxidant hydroquinone forms. In the process may function as superoxide scavenger to prevent hydroguinone oxidation and facilitate excretion (PubMed:15102952, PubMed:8999809, PubMed:9271353). Alternatively, can activate guinones and their derivatives by generating redox reactive hydroguinones with DNA cross-linking antitumor potential (PubMed: 8999809). Acts as a gatekeeper of the core 20S proteasome known to degrade proteins with unstructured regions. Upon oxidative stress, interacts with tumor suppressors TP53 and TP73 in a NADH-dependent way and inhibits their ubiquitin-independent degradation by the 20S proteasome (PubMed:15687255, PubMed:28291250). # **Cellular Location** Cytoplasm, cytosol {ECO:0000250|UniProtKB:P05982} # **NQO1 Antibody - Protocols** Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - Immunohistochemistry - Immunofluorescence - Immunoprecipitation - Flow Cytomety - Cell Culture Figure 1: Western blot analysis using NQO1 mAb against human NQO1 (AA: 134-274) recombinant protein. (Expected MW is 41.3 kDa) Figure 2: Western blot analysis using NQO1 mouse mAb against A549 (1), SKNES (2), HepG2 (3), MCF-7 (4) and Hela (5) cell lysate. Figure 3: Immunohistochemical analysis of paraffin-embedded testis tissues using NQO1 mouse mAb with DAB staining. Figure 4: Immunohistochemical analysis of paraffin-embedded ovarian cancer tissues using NQO1 mouse mAb with DAB staining. Figure 5: Flow cytometric analysis of NIH/3T3 cells using NQO1 mouse mAb (green) and negative control (red). # **NQO1 Antibody - References** 1. Mol Cancer Ther. 2009 Dec;8(12):3369-78. 2. J Biol Chem. 2009 Nov 27;284(48):33233-41.