

CSF1R Antibody

Purified Mouse Monoclonal Antibody Catalog # AO1893a

Specification

CSF1R Antibody - Product Information

Application WB, IHC, FC, E

Primary Accession P07333 Reactivity Human Host Mouse Clonality **Monoclonal** Isotype laG2b Calculated MW 108kDa KDa

Description

The protein encoded by this gene is the receptor for colony stimulating factor 1, a cytokine which controls the production, differentiation, and function of macrophages. This receptor mediates most if not all of the biological effects of this cytokine. Ligand binding activates the receptor kinase through a process of oligomerization and transphosphorylation. The encoded protein is a tyrosine kinase transmembrane receptor and member of the CSF1/PDGF receptor family of tyrosine-protein kinases. Mutations in this gene have been associated with a predisposition to myeloid malignancy. The first intron of this gene contains a transcriptionally inactive ribosomal protein L7 processed pseudogene oriented in the opposite direction.

Immunogen

Purified recombinant fragment of human CSF1R (AA: 344-497) expressed in E. Coli.

Formulation

Purified antibody in PBS with 0.05% sodium azide

CSF1R Antibody - Additional Information

Gene ID 1436

Other Names

Macrophage colony-stimulating factor 1 receptor, CSF-1 receptor, CSF-1-R, CSF-1R, M-CSF-R, 2.7.10.1, Proto-oncogene c-Fms, CD115, CSF1R, FMS

Dilution

WB~~1/500 - 1/2000 IHC~~1/200 - 1/1000 FC~~1/200 - 1/400 E~~1/10000

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

CSF1R Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

CSF1R Antibody - Protein Information

Name CSF1R

Synonyms FMS

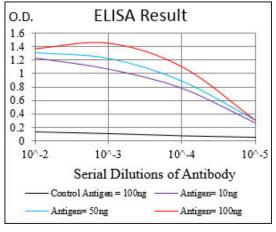
Function

Tyrosine-protein kinase that acts as a cell-surface receptor for CSF1 and IL34 and plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of pro-inflammatory chemokines in response to IL34 and CSF1, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone and tooth development. Required for normal male and female fertility, and for normal development of milk ducts and acinar structures in the mammary gland during pregnancy. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration, and promotes cancer cell invasion. Activates several signaling pathways in response to ligand binding, including the ERK1/2 and the INK pathway (PubMed: 20504948, PubMed:30982609). Phosphorylates PIK3R1, PLCG2, GRB2, SLA2 and CBL. Activation of PLCG2 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, that then lead to the activation of protein kinase C family members, especially PRKCD. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to activation of the AKT1 signaling pathway. Activated CSF1R also mediates activation of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1, and of the SRC family kinases SRC, FYN and YES1. Activated CSF1R transmits signals both via proteins that directly interact with phosphorylated tyrosine residues in its intracellular domain, or via adapter proteins, such as GRB2. Promotes activation of STAT family members STAT3, STAT5A and/or STAT5B. Promotes tyrosine phosphorylation of SHC1 and INPP5D/SHIP-1. Receptor signaling is down-regulated by protein phosphatases, such as INPP5D/SHIP-1, that dephosphorylate the receptor and its downstream effectors, and by rapid internalization of the activated receptor. In the central nervous system, may play a role in the development of microglia macrophages (PubMed: 30982608).

Cellular Location

Cell membrane; Single-pass type I membrane protein

Tissue Location


Expressed in bone marrow and in differentiated blood mononuclear cells

CSF1R Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

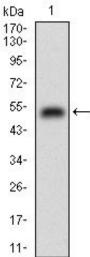


Figure 1: Western blot analysis using CSF1R mAb against human CSF1R (AA: 344-497) recombinant protein. (Expected MW is 43.3 kDa)

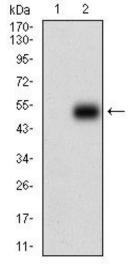


Figure 2: Western blot analysis using CSF1R mAb against HEK293 (1) and CSF1R (AA: 344-497)-hlgGFc transfected HEK293 (2) cell lysate.

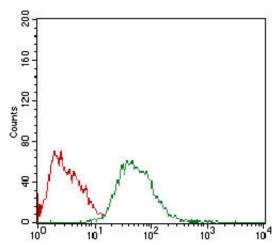


Figure 3: Flow cytometric analysis of HepG2 cells using CSF1R mouse mAb (green) and negative control (red).

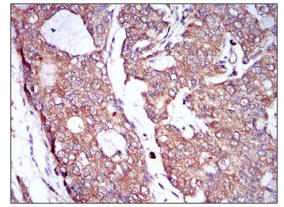


Figure 4: Immunohistochemical analysis of paraffin-embedded prostate cancer tissues using CSF1R mouse mAb with DAB staining.

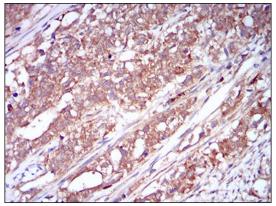
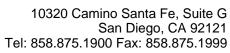



Figure 5: Immunohistochemical analysis of paraffin-embedded cervical cancer tissues using CSF1R mouse mAb with DAB staining.

CSF1R Antibody - Background

This gene encodes a serum protein found in association with the major histocompatibility complex (MHC) class I heavy chain on the surface of nearly all nucleated cells. The protein has a predominantly beta-pleated sheet structure that can form amyloid fibrils in some pathological conditions. A mutation in this gene has been shown to result in hypercatabolic hypoproteinemia.;

CSF1R Antibody - References

1. PLoS One. 2011;6(11):e27450. 2. J Biochem. 2012 Jan;151(1):47-55.