

E2F2 Antibody (Center)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP10481C

Specification

E2F2 Antibody (Center) - Product Information

WB,E Application **Primary Accession** 014209 Other Accession NP 004082.1 Human, Mouse Reactivity Host **Rabbit** Clonality **Polyclonal** Isotype Rabbit IgG Calculated MW 47506 Antigen Region 258-286

E2F2 Antibody (Center) - Additional Information

Gene ID 1870

Other Names

Transcription factor E2F2, E2F-2, E2F2

Target/Specificity

This E2F2 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 258-286 amino acids from the Central region of human E2F2.

Dilution

WB~~1:2000

E~~Use at an assay dependent concentration.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.


Precautions

E2F2 Antibody (Center) is for research use only and not for use in diagnostic or therapeutic procedures.

E2F2 Antibody (Center) - Protein Information

Name E2F2

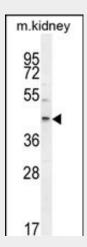
Function Transcription activator that binds DNA cooperatively with DP proteins through the E2

recognition site, 5'-TTTC[CG]CGC-3' found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication. The DRTF1/E2F complex functions in the control of cell-cycle progression from g1 to s phase. E2F2 binds specifically to RB1 in a cell-cycle dependent manner.

Cellular Location

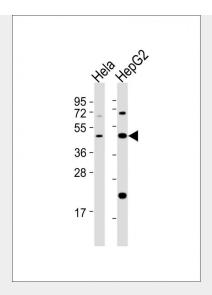
Nucleus.

Tissue Location


Highest level of expression is found in placenta, low levels are found in lung. Found as well in many immortalized cell lines derived from tumor samples

E2F2 Antibody (Center) - Protocols

Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

E2F2 Antibody (Center) - Images

E2F2 Antibody (Center) (Cat. #AP10481c) western blot analysis in mouse kidney tissue lysates (35ug/lane). This demonstrates the E2F2 antibody detected the E2F2 protein (arrow).

All lanes : Anti-E2F2 Antibody (Center) at 1:2000 dilution Lane 1: Hela whole cell lysates Lane 2: HepG2 whole cell lysates Lysates/proteins at 20 μ g per lane. Secondary Goat Anti-Rabbit lgG, (H+L), Peroxidase conjugated at 1/10000 dilution Predicted band size : 48 kDa Blocking/Dilution buffer: 5% NFDM/TBST.

E2F2 Antibody (Center) - Background

E2F2 is a member of the E2F

family of transcription factors. The E2F family plays a crucial role in the control of cell cycle and action of tumor suppressor proteins and is also a target of the transforming proteins of small DNA tumor viruses. The E2F proteins contain several evolutionally conserved domains found in most members of the family. These domains include a DNA binding domain, a dimerization domain which determines interaction with the differentiation regulated transcription factor proteins (DP), a transactivation domain enriched in acidic amino acids, and a tumor suppressor protein association domain which is embedded within the transactivation domain. This protein and another 2 members, E2F1 and E2F3, have an additional cyclin binding domain. This protein binds specifically to retinoblastoma protein pRB in a cell-cycle dependent manner, and it exhibits overall 46% amino acid identity to E2F1. [provided by RefSeq].

E2F2 Antibody (Center) - References

Revenko, A.S., et al. Mol. Cell. Biol. 30(22):5260-5272(2010) Hayami, S., et al. Mol. Cancer 9, 59 (2010): Chen, J., et al. Cancer Causes Control 20(9):1769-1777(2009) Cunningham, J.M., et al. Br. J. Cancer 101(8):1461-1468(2009) Lal, A., et al. Mol. Cell 35(5):610-625(2009)