

CCNC Antibody (N-term)
Purified Rabbit Polyclonal Antibody (Pab)
Catalog # AP11208a

Specification

CCNC Antibody (N-term) - Product Information

Application	WB, FC,E
Primary Accession	P24863
Other Accession	NP_005181.2
Reactivity	Human
Host	Rabbit
Clonality	Polyclonal
Isotype	Rabbit IgG
Calculated MW	33243
Antigen Region	1-30

CCNC Antibody (N-term) - Additional Information

Gene ID 892

Other Names

Cyclin-C, SRB11 homolog, hSRB11, CCNC

Target/Specificity

This CCNC antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 1-30 amino acids from the N-terminal region of human CCNC.

Dilution

WB~~1:1000

FC~~1:10~50

E~~Use at an assay dependent concentration.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation followed by dialysis against PBS.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

CCNC Antibody (N-term) is for research use only and not for use in diagnostic or therapeutic procedures.

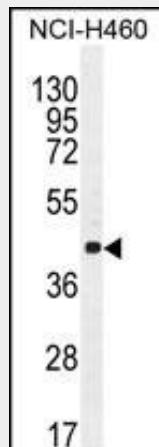
CCNC Antibody (N-term) - Protein Information

Name CCNC

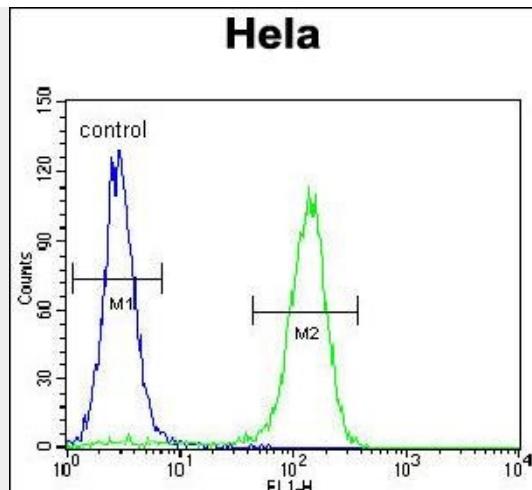
Function Component of the Mediator complex, a coactivator involved in regulated gene transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene- specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. Binds to and activates cyclin- dependent kinase CDK8 that phosphorylates the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAP II), which may inhibit the formation of a transcription initiation complex.

Cellular Location

Nucleus.


Tissue Location

Highest levels in pancreas. High levels in heart, liver, skeletal muscle and kidney. Low levels in brain


CCNC Antibody (N-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- [Western Blot](#)
- [Blocking Peptides](#)
- [Dot Blot](#)
- [Immunohistochemistry](#)
- [Immunofluorescence](#)
- [Immunoprecipitation](#)
- [Flow Cytometry](#)
- [Cell Culture](#)

CCNC Antibody (N-term) - Images

CCNC Antibody (N-term) (Cat. #AP11208a) western blot analysis in NCI-H460 cell line lysates (35ug/lane). This demonstrates the CCNC antibody detected the CCNC protein (arrow).

CCNC Antibody (N-term) (Cat. #AP11208a) flow cytometric analysis of Hela cells (right histogram) compared to a negative control cell (left histogram). FITC-conjugated goat-anti-rabbit secondary antibodies were used for the analysis.

CCNC Antibody (N-term) - Background

The protein encoded by this gene is a member of the cyclin family of proteins. The encoded protein interacts with cyclin-dependent kinase 8 and induces the phosphorylation of the carboxy-terminal domain of the large subunit of RNA polymerase II. The level of mRNAs for this gene peaks in the G1 phase of the cell cycle. Two transcript variants encoding different isoforms have been found for this gene.

CCNC Antibody (N-term) - References

- Miyata, Y., et al. Stem Cells 28(2):308-317(2010)
- Makkonen, K.M., et al. J. Mol. Biol. 393(2):261-271(2009)
- Matsuoka, S., et al. Science 316(5828):1160-1166(2007)
- Katona, R.L., et al. Acta. Biol. Hung. 58(1):133-137(2007)
- Lamesch, P., et al. Genomics 89(3):307-315(2007)