

MET Antibody

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP12080a

Specification

MET Antibody - Product Information

Application WB,E
Primary Accession P08581

Other Accession <u>NP_001120972.1</u>, <u>NP_000236.2</u>

Reactivity
Host
Clonality
Polyclonal
Isotype
Calculated MW
Human
Rabbit
Polyclonal
Rabbit IgG
Calculated MW
155541

MET Antibody - Additional Information

Gene ID 4233

Other Names

Hepatocyte growth factor receptor, HGF receptor, HGF/SF receptor, Proto-oncogene c-Met, Scatter factor receptor, SF receptor, Tyrosine-protein kinase Met, MET

Target/Specificity

This ZNF593 antibody is generated from rabbits immunized with a His fusion protein from human MET.

Dilution

WB~~1:1000

E~~Use at an assay dependent concentration.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

MET Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

MET Antibody - Protein Information

Name MET

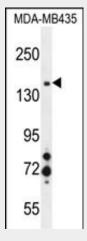
Function Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to hepatocyte growth factor/HGF ligand. Regulates many physiological

processes including proliferation, scattering, morphogenesis and survival. Ligand binding at the cell surface induces autophosphorylation of MET on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with the PI3-kinase subunit PIK3R1, PLCG1, SRC, GRB2, STAT3 or the adapter GAB1. Recruitment of these downstream effectors by MET leads to the activation of several signaling cascades including the RAS-ERK, PI3 kinase-AKT, or PLCgamma-PKC. The RAS-ERK activation is associated with the morphogenetic effects while PI3K/AKT coordinates prosurvival effects. During embryonic development, MET signaling plays a role in gastrulation, development and migration of neuronal precursors, angiogenesis and kidney formation. During skeletal muscle development, it is crucial for the migration of muscle progenitor cells and for the proliferation of secondary myoblasts (By similarity). In adults, participates in wound healing as well as organ regeneration and tissue remodeling. Also promotes differentiation and proliferation of hematopoietic cells. May regulate cortical bone osteogenesis (By similarity).

Cellular Location

Membrane; Single-pass type I membrane protein.

Tissue Location


Expressed in normal hepatocytes as well as in epithelial cells lining the stomach, the small and the large intestine Found also in basal keratinocytes of esophagus and skin. High levels are found in liver, gastrointestinal tract, thyroid and kidney. Also present in the brain. Expressed in metaphyseal bone (at protein level) (PubMed:26637977).

MET Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- <u>Immunofluorescence</u>
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

MET Antibody - Images

MET Antibody (Cat. #AP12080a) western blot analysis in MDA-MB435 cell line lysates (35ug/lane). This demonstrates the MET antibody detected the MET protein (arrow).

MET Antibody - Background

The proto-oncogene MET product is the hepatocyte growth factor receptor and encodes tyrosine-kinase activity. The primary single chain precursor protein is post-translationally cleaved to produce the alpha and beta subunits, which are disulfide linked to form the mature receptor. Various mutations in the MET gene are associated with papillary renal carcinoma. Two transcript variants encoding different isoforms have been found for this gene.

MET Antibody - References

Song, J., et al. Arch. Pathol. Lab. Med. 134(11):1702-1705(2010) Thanseem, I., et al. Neurosci. Res. 68(2):137-141(2010) Holgren, C., et al. Oncogene 29(38):5241-5253(2010) Sugiura, T., et al. Clin. Immunol. 136(3):387-399(2010) Tyner, J.W., et al. Cancer Res. 70(15):6233-6237(2010)