

PSMB10 Antibody (C-term)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP12569B

Specification

PSMB10 Antibody (C-term) - Product Information

Application WB.E **Primary Accession** P40306 Other Accession NP 002792.1 Reactivity Human Host **Rabbit** Clonality **Polyclonal** Isotype Rabbit IgG Calculated MW 28936 Antigen Region 214-242

PSMB10 Antibody (C-term) - Additional Information

Gene ID 5699

Other Names

Proteasome subunit beta type-10, Low molecular mass protein 10, Macropain subunit MECI-1, Multicatalytic endopeptidase complex subunit MECI-1, Proteasome MECI-1, Proteasome subunit beta-2i, PSMB10, LMP10, MECL1

Target/Specificity

This PSMB10 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 214-242 amino acids from the C-terminal region of human PSMB10.

Dilution

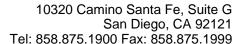
WB~~1:1000

E~~Use at an assay dependent concentration.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage


Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

PSMB10 Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures.

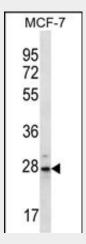
PSMB10 Antibody (C-term) - Protein Information

Name PSMB10

Synonyms LMP10, MECL1

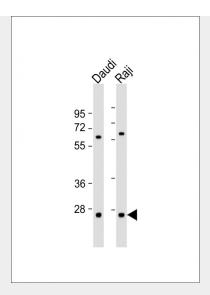
Function The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. This subunit is involved in antigen processing to generate class I binding peptides.

Cellular Location


Cytoplasm {ECO:0000255|PROSITE-ProRule:PRU00809}. Nucleus

PSMB10 Antibody (C-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

PSMB10 Antibody (C-term) - Images

PSMB10 Antibody (C-term) (Cat. #AP12569b) western blot analysis in MCF-7 cell line lysates (35ug/lane). This demonstrates the PSMB10 antibody detected the PSMB10 protein (arrow).

All lanes : Anti-PSMB10 Antibody (C-term) at 1:1000 dilution Lane 1: Daudi whole cell lysate Lane 2: Raji whole cell lysate Lysates/proteins at 20 μ g per lane. Secondary Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated at 1/10000 dilution. Predicted band size : 29 kDa Blocking/Dilution buffer: 5% NFDM/TBST.

PSMB10 Antibody (C-term) - Background

The proteasome is a multicatalytic proteinase complex with a highly ordered ring-shaped 20S core structure. The core structure is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. This gene encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. Proteolytic processing is required to generate a mature subunit. Expression of this gene is induced by gamma interferon, and this gene product replaces catalytic subunit 2 (proteasome beta 7 subunit) in the immunoproteasome.

PSMB10 Antibody (C-term) - References

Bailey, S.D., et al. Diabetes Care (2010) In press: Talmud, P.J., et al. Am. J. Hum. Genet. 85(5):628-642(2009) Moschonas, A., et al. Mol. Cell. Biol. 28(20):6208-6222(2008) Liu, Y., et al. DNA Seq. 18(4):257-264(2007) Listovsky, T., et al. EMBO J. 23(7):1619-1626(2004)