

CBLC Antibody (C-term)
Purified Rabbit Polyclonal Antibody (Pab)
Catalog # AP1258a

Specification

CBLC Antibody (C-term) - Product Information

Application	WB, IHC-P,E
Primary Accession	Q9ULV8
Reactivity	Human
Host	Rabbit
Clonality	Polyclonal
Isotype	Rabbit IgG
Antigen Region	424-453

CBLC Antibody (C-term) - Additional Information

Gene ID 23624

Other Names

E3 ubiquitin-protein ligase CBL-C, 632-, RING finger protein 57, SH3-binding protein CBL-3, SH3-binding protein CBL-C, Signal transduction protein CBL-C, CBLC, CBL3, RNF57

Target/Specificity

This CBLC antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 424-453 amino acids from the C-terminal region of human CBLC.

Dilution

WB~~1:1000
IHC-P~~1:50~100
E~~Use at an assay dependent concentration.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation followed by dialysis against PBS.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

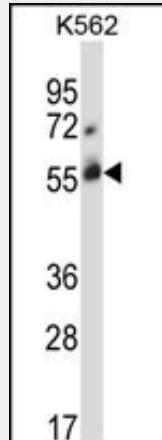
CBLC Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures.

CBLC Antibody (C-term) - Protein Information

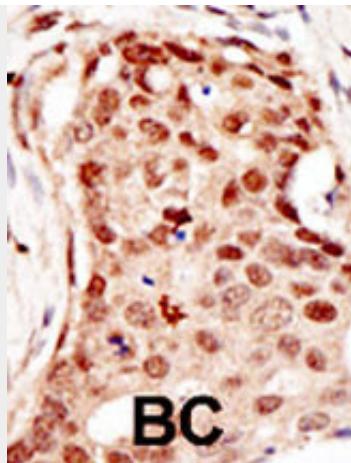
Name CBLC

Synonyms CBL3, RNF57

Function Acts as an E3 ubiquitin-protein ligase, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their degradation by the proteasome. Functionally coupled with the E2 ubiquitin-protein ligases UB2D1, UB2D2 and UB2D3. Regulator of EGFR mediated signal transduction; upon EGF activation, ubiquitinates EGFR. Isoform 1, but not isoform 2, inhibits EGF stimulated MAPK1 activation. Promotes ubiquitination of SRC phosphorylated at 'Tyr-419'. In collaboration with CD2AP may act as regulatory checkpoint for Ret signaling by modulating the rate of RET degradation after ligand activation; CD2AP converts it from an inhibitor to a promoter of RET degradation; the function limits the potency of GDNF on neuronal survival.


Tissue Location

Ubiquitous..


CBLC Antibody (C-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- [Western Blot](#)
- [Blocking Peptides](#)
- [Dot Blot](#)
- [Immunohistochemistry](#)
- [Immunofluorescence](#)
- [Immunoprecipitation](#)
- [Flow Cytometry](#)
- [Cell Culture](#)

CBLC Antibody (C-term) - Images

CBLC Antibody (R439) (Cat. #AP1258a) western blot analysis in K562 cell line lysates (35ug/lane). This demonstrates the CBLC antibody detected the CBLC protein (arrow).

Formalin-fixed and paraffin-embedded human cancer tissue reacted with the primary antibody, which was peroxidase-conjugated to the secondary antibody, followed by DAB staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated. BC = breast carcinoma; HC = hepatocarcinoma.

CBLC Antibody (C-term) - Background

Cbl proteins are a family of ubiquitin protein ligases (E3s) that negatively regulate signaling by targeting activated tyrosine kinases for degradation. Cbl- c is the most recently cloned member of the Cbl proteins and is expressed only in epithelial cells (the other Cbl proteins are ubiquitously expressed). Cbl-c, like the other mammalian Cbl proteins, can ubiquitinate the activated EGFR and target it for degradation. Through interactions with proteins containing SRC homology-2 (SH2) and SH3 domains, CBL proteins modulate downstream cell signaling.

CBLC Antibody (C-term) - References

Strausberg, R.L., et al., Proc. Natl. Acad. Sci. U.S.A. 99(26):16899-16903 (2002).
Keane, M.M., et al., Oncogene 18(22):3365-3375 (1999).
Kim, M., et al., Gene 239(1):145-154 (1999).