

**MKKS Antibody (C-term)**  
**Affinity Purified Rabbit Polyclonal Antibody (Pab)**  
**Catalog # AP16289b**

### Specification

#### MKKS Antibody (C-term) - Product Information

|                   |                                                           |
|-------------------|-----------------------------------------------------------|
| Application       | WB,E                                                      |
| Primary Accession | <a href="#">Q9NPJ1</a>                                    |
| Other Accession   | <a href="#">NP_740754.1</a> , <a href="#">NP_061336.1</a> |
| Reactivity        | Human                                                     |
| Host              | Rabbit                                                    |
| Clonality         | Polyclonal                                                |
| Isotype           | Rabbit IgG                                                |
| Calculated MW     | 62342                                                     |
| Antigen Region    | 408-437                                                   |

#### MKKS Antibody (C-term) - Additional Information

##### Gene ID 8195

##### Other Names

McKusick-Kaufman/Bardet-Biedl syndromes putative chaperonin, Bardet-Biedl syndrome 6 protein, MKKS, BBS6

##### Target/Specificity

This MKKS antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 408-437 amino acids from the C-terminal region of human MKKS.

##### Dilution

WB~~1:1000

E~~Use at an assay dependent concentration.

##### Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

##### Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

##### Precautions

MKKS Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures.

#### MKKS Antibody (C-term) - Protein Information

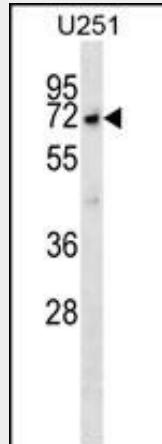
Name MKKS ([HGNC:7108](#))

**Function** Probable molecular chaperone that assists the folding of proteins upon ATP hydrolysis (PubMed:[20080638](#)). Plays a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:[20080638](#)). May play a role in protein processing in limb, cardiac and reproductive system development. May play a role in cytokinesis (PubMed:[28753627](#)).

#### Cellular Location

Cytoplasm, cytoskeleton, microtubule organizing center, centrosome. Cytoplasm, cytosol Nucleus. Note=The majority of the protein resides within the pericentriolar material (PCM), a proteinaceous tube surrounding centrioles. During interphase, the protein is confined to the lateral surfaces of the PCM but during mitosis it relocates throughout the PCM and is found at the intercellular bridge. The MKSS protein is highly mobile and rapidly shuttles between the cytosol and centrosome

#### Tissue Location


Widely expressed in adult and fetal tissues.

#### MKKS Antibody (C-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- [Western Blot](#)
- [Blocking Peptides](#)
- [Dot Blot](#)
- [Immunohistochemistry](#)
- [Immunofluorescence](#)
- [Immunoprecipitation](#)
- [Flow Cytometry](#)
- [Cell Culture](#)

#### MKKS Antibody (C-term) - Images



MKKS Antibody (C-term) (Cat. #AP16289b) western blot analysis in U251 cell line lysates (35ug/lane). This demonstrates the MKKS antibody detected the MKKS protein (arrow).

#### MKKS Antibody (C-term) - Background

MKKS is a protein with sequence similarity to the chaperonin family. The encoded protein may have a role in protein processing in limb, cardiac and reproductive system

development. Mutations in this gene have been observed in patients with Bardet-Biedl syndrome type 6 and McKusick-Kaufman syndrome. Two transcript variants encoding the same protein have been identified for this gene.

#### **MKKS Antibody (C-term) - References**

Bailey, S.D., et al. Diabetes Care 33(10):2250-2253(2010)  
Billingsley, G., et al. J. Med. Genet. 47(7):453-463(2010)  
Corpeleijn, E., et al. Obesity (Silver Spring) 18(7):1369-1377(2010)  
Mukherjee, K., et al. BMC Evol. Biol. 10, 64 (2010) :  
Talmud, P.J., et al. Am. J. Hum. Genet. 85(5):628-642(2009)