

FAAH Antibody (C-term)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP17046B

Specification

FAAH Antibody (C-term) - Product Information

Application	WB,E
Primary Accession	<u>000519</u>
Other Accession	<u>NP_001432.2</u>
Reactivity	Human
Host	Rabbit
Clonality	Polyclonal
Isotype	Rabbit IgG
Calculated MW	63066
Antigen Region	501-529

FAAH Antibody (C-term) - Additional Information

Gene ID 2166

Other Names Fatty-acid amide hydrolase 1, Anandamide amidohydrolase 1, Oleamide hydrolase 1, FAAH, FAAH1

Target/Specificity

This FAAH antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 501-529 amino acids from the C-terminal region of human FAAH.

Dilution WB~~1:1000 E~~Use at an assay dependent concentration.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

FAAH Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures.

FAAH Antibody (C-term) - Protein Information

Name FAAH

Synonyms FAAH1

Function Catalyzes the hydrolysis of endogenous amidated lipids like the sleep-inducing lipid oleamide ((9Z)-octadecenamide), the endocannabinoid anandamide

(N-(5Z,8Z,11Z,14Z-eicosatetraenoyl)- ethanolamine), as well as other fatty amides, to their corresponding fatty acids, thereby regulating the signaling functions of these molecules (PubMed:<u>17015445</u>, PubMed:<u>19926788</u>, PubMed:<u>9122178</u>). Hydrolyzes polyunsaturated substrate anandamide preferentially as compared to monounsaturated substrates (PubMed:<u>17015445</u>, PubMed:<u>9122178</u>). It can also catalyze the hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-(5Z,8Z,11Z,14Z- eicosatetraenoyl)-glycerol) (PubMed:<u>21049984</u>). FAAH cooperates with PM20D1 in the hydrolysis of amino acid-conjugated fatty acids such as N-fatty acyl glycine and N-fatty acyl-L-serine, thereby acting as a physiological regulator of specific subsets of intracellular, but not of extracellular, N-fatty acyl amino acids (By similarity).

Cellular Location

Endomembrane system; Single-pass membrane protein. Cytoplasm, cytoskeleton. Note=Seems to be attached to intracellular membranes and a portion of the cytoskeletal network

Tissue Location

Highly expressed in the brain, small intestine, pancreas, skeletal muscle and testis. Also expressed in the kidney, liver, lung, placenta and prostate.

FAAH Antibody (C-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- <u>Dot Blot</u>
- <u>Immunohistochemistry</u>
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

FAAH Antibody (C-term) - Images

FAAH Antibody (C-term) (Cat. #AP17046b) western blot analysis in HepG2 cell line lysates (35ug/lane). This demonstrates the FAAH antibody detected the FAAH protein (arrow).

FAAH Antibody (C-term) - Background

This gene encodes a protein that is responsible for the hydrolysis of a number of primary and secondary fatty acid amides, including the neuromodulatory compounds anandamide and oleamide.

FAAH Antibody (C-term) - References

Bailey, S.D., et al. Diabetes Care 33(10):2250-2253(2010) de Luis, D.A., et al. Metab. Clin. Exp. (2010) In press : Monteleone, P., et al. J Clin Psychopharmacol 30(4):441-445(2010) Taylor, A.H., et al. Histochem. Cell Biol. 133(5):557-565(2010) Thors, L., et al. PLoS ONE 5 (8), E12275 (2010) :