

RFFL Antibody(C-term)

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP19448b

Specification

RFFL Antibody(C-term) - Product Information

Application WB,E
Primary Accession Q8WZ73

Other Accession <u>Q8CIN9</u>, <u>Q6ZQM0</u>, <u>NP_476519.1</u>

Reactivity
Predicted
Mouse, Rat
Host
Clonality
Polyclonal
Isotype
Calculated MW
Antigen Region
Human
Mouse, Rat
Rabbit
Rabbit
Rabbit
Polyclonal
Rabbit IgG
A0514
Action Region
265-294

RFFL Antibody(C-term) - Additional Information

Gene ID 117584

Other Names

E3 ubiquitin-protein ligase rififylin, 632-, Caspase regulator CARP2, Caspases-8 and -10-associated RING finger protein 2, CARP-2, FYVE-RING finger protein Sakura, Fring, RING finger and FYVE-like domain-containing protein 1, RING finger protein 189, RING finger protein 34-like, RFFL (HGNC:24821), RNF189, RNF34L

Target/Specificity

This RFFL antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 265-294 amino acids from the C-terminal region of human RFFL.

Dilution

WB~~1:1000

E~~Use at an assay dependent concentration.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

RFFL Antibody(C-term) is for research use only and not for use in diagnostic or therapeutic procedures.

RFFL Antibody(C-term) - Protein Information

Name RFFL (HGNC:24821)

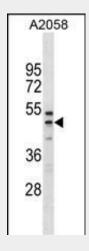
Synonyms RNF189, RNF34L

Function E3 ubiquitin-protein ligase that regulates several biological processes through the ubiquitin-mediated proteasomal degradation of various target proteins. Mediates 'Lys-48'-linked polyubiquitination of PRR5L and its subsequent proteasomal degradation thereby indirectly regulating cell migration through the mTORC2 complex. Ubiquitinates the caspases CASP8 and CASP10, promoting their proteasomal degradation, to negatively regulate cell death downstream of death domain receptors in the extrinsic pathway of apoptosis. Negatively regulates the tumor necrosis factor-mediated signaling pathway through targeting of RIPK1 to ubiquitin-mediated proteasomal degradation. Negatively regulates p53/TP53 through its direct ubiquitination and targeting to proteasomal degradation. Indirectly, may also negatively regulate p53/TP53 through ubiquitination and degradation of SFN. May also play a role in endocytic recycling.

Cellular Location

Cytoplasm, cytosol. Cell membrane; Peripheral membrane protein. Recycling endosome membrane; Peripheral membrane protein. Note=The FYVE-type zinc finger may mediate phosphatidylinositol phosphate-binding and control subcellular localization

Tissue Location


Ubiquitous. Detected in spleen, thymus, prostate, testis, ovary, small intestine, colon and peripheral blood leukocytes

RFFL Antibody(C-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

RFFL Antibody(C-term) - Images

RFFL Antibody (C-term) (Cat. #AP19448b) western blot analysis in A2058 cell line lysates (35ug/lane). This demonstrates the RFFL antibody detected the RFFL protein (arrow).

RFFL Antibody(C-term) - Background

RFFL has E3 ubiquitin protein ligase activity. Regulates the levels of CASP8 and CASP10 by targeting them for proteasomal degradation. Has anti-apoptotic activity. May bind phosphatidylinositol phosphates.

RFFL Antibody(C-term) - References

Shimada, M., et al. Hum. Genet. 128(4):433-441(2010) Hosgood, H.D. III, et al. Occup Environ Med 66(12):848-853(2009) Newton-Cheh, C., et al. Nat. Genet. 41(4):399-406(2009) Liao, W., et al. Curr. Biol. 18(9):641-649(2008) Yang, W., et al. Cell Cycle 7(5):670-682(2008)