

FZD10 Antibody (N-term)

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP21301a

Specification

FZD10 Antibody (N-term) - Product Information

Application WB,E
Primary Accession Q9ULW2
Reactivity Mouse
Host Rabbit
Clonality polyclonal
Isotype Rabbit IgG
Calculated MW 65336

FZD10 Antibody (N-term) - Additional Information

Gene ID 11211

Other Names

Frizzled-10, Fz-10, hFz10, FzE7, CD350, FZD10

Target/Specificity

This FZD10 antibody is generated from a rabbit immunized with a KLH conjugated synthetic peptide between 177-212 amino acids from the N-terminal region of human FZD10.

Dilution

WB~~1:2000

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

FZD10 Antibody (N-term) is for research use only and not for use in diagnostic or therapeutic procedures.

FZD10 Antibody (N-term) - Protein Information

Name FZD10

Function Receptor for Wnt proteins. Functions in the canonical Wnt/beta-catenin signaling pathway (By similarity). The canonical Wnt/beta-catenin signaling pathway leads to the activation of disheveled proteins, inhibition of GSK-3 kinase, nuclear accumulation of beta-catenin and activation of Wnt target genes. A second signaling pathway involving PKC and calcium fluxes has

been seen for some family members, but it is not yet clear if it represents a distinct pathway or if it can be integrated in the canonical pathway, as PKC seems to be required for Wnt-mediated inactivation of GSK-3 kinase. Both pathways seem to involve interactions with G-proteins. May be involved in transduction and intercellular transmission of polarity information during tissue morphogenesis and/or in differentiated tissues (Probable).

Cellular Location

Cell membrane; Multi-pass membrane protein

Tissue Location

Highest levels in the placenta and fetal kidney, followed by fetal lung and brain. In adult brain, abundantly expressed in the cerebellum, followed by cerebral cortex, medulla and spinal cord; very low levels in total brain, frontal lobe, temporal lobe and putamen. Weak expression detected in adult brain, heart, lung, skeletal muscle, pancreas, spleen and prostate.

FZD10 Antibody (N-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

FZD10 Antibody (N-term) - Images

Anti-FZD10 Antibody (N-term)at 1:2000 dilution + mouse kidney lysates Lysates/proteins at 20 μ g per lane. Secondary Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated at 1/10000 dilution Predicted band size : 65 kDa Blocking/Dilution buffer: 5% NFDM/TBST.

FZD10 Antibody (N-term) - Background

Receptor for Wnt proteins. Most of frizzled receptors are coupled to the beta-catenin canonical

Tel: 858.875.1900 Fax: 858.875.1999

signaling pathway, which leads to the activation of disheveled proteins, inhibition of GSK- 3 kinase, nuclear accumulation of beta-catenin and activation of Wnt target genes. A second signaling pathway involving PKC and calcium fluxes has been seen for some family members, but it is not yet clear if it represents a distinct pathway or if it can be integrated in the canonical pathway, as PKC seems to be required for Wnt-mediated inactivation of GSK-3 kinase. Both pathways seem to involve interactions with G-proteins. May be involved in transduction and intercellular transmission of polarity information during tissue morphogenesis and/or in differentiated tissues.

FZD10 Antibody (N-term) - References

Koike J., et al. Biochem. Biophys. Res. Commun. 262:39-43(1999). Tanaka S., et al. Proc. Natl. Acad. Sci. U.S.A. 95:10164-10169(1998). Kwon H.S., et al. Mol. Cell. Biol. 29:2139-2154(2009).