

EPS15 Antibody (C-term)

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP2159b

Specification

EPS15 Antibody (C-term) - Product Information

Application WB,E
Primary Accession P42566

Other Accession P42567, NP_001972

Reactivity
Predicted
Host
Clonality
Isotype
Calculated MW
Antigen Region

Human
Mouse
Rabbit
Polyclonal
Rabbit IgG
Rabbit IgG
840-870

EPS15 Antibody (C-term) - Additional Information

Gene ID 2060

Other Names

Epidermal growth factor receptor substrate 15, Protein Eps15, Protein AF-1p, EPS15, AF1P

Target/Specificity

This EPS15 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 840-870 amino acids from the C-terminal region of human EPS15.

Dilution

WB~~1:1000

E~~Use at an assay dependent concentration.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation followed by dialysis against PBS.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

EPS15 Antibody (C-term) is for research use only and not for use in diagnostic or therapeutic procedures.

EPS15 Antibody (C-term) - Protein Information

Name EPS15

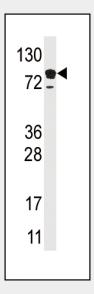
Synonyms AF1P

Function Involved in cell growth regulation. May be involved in the regulation of mitogenic signals and control of cell proliferation. Involved in the internalization of ligand-inducible receptors of the receptor tyrosine kinase (RTK) type, in particular EGFR. Plays a role in the assembly of clathrin-coated pits (CCPs). Acts as a clathrin adapter required for post-Golgi trafficking. Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2.

Cellular Location

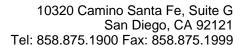
Cytoplasm. Cell membrane; Peripheral membrane protein; Cytoplasmic side. Membrane, clathrin-coated pit Note=Recruited to the plasma membrane upon EGFR activation and localizes to coated pits. Colocalizes with UBQLN1 in ubiquitin-rich cytoplasmic aggregates that are not endocytic compartments and in cytoplasmic juxtanuclear structures called aggresomes

Tissue Location


Ubiquitously expressed.

EPS15 Antibody (C-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

EPS15 Antibody (C-term) - Images

Western blot analysis of anti-EPS15 Pab (Cat. #AP2159b) in HL60 cell line lysate (35ug/lane). EPS15 (arrow) was detected using the purified Pab.

EPS15 Antibody (C-term) - Background

EPS15 is involved in cell growth regulation, possibly via the regulation of mitogenic signals and control of cell proliferation. EPS15 also participates in the internalization of ligand-inducible receptors of the receptor tyrosine kinase (RTK) type, in particular EGFR. Potential interaction partners include AP2A2, STN2, EPN1, and CRK via its SH3-binding sites. EPS15 is ubiquitously expressed. Phosphorylation on Tyr-849 is involved in the internalization of EGFR. EPS15 is not required for membrane translocation after EGF treatment or for targeting to coated pits, but essential for a subsequent step in EGFR endocytosis. This protein is involved in a t(1;11)(p32;q23) chromosomal translocation in acute leukemias causing fusion to the trithorax (MLL or HRX) gene product which contains DNA-binding motifs resulting in a rogue activator protein. Structurally, EPS15 contains 2 EF-hand calcium-binding domains, 3 EH domains, and 2 ubiquitin-interacting motif (UIM) repeats.

EPS15 Antibody (C-term) - References

de Beer, T., et al., Nat. Struct. Biol. 7(11):1018-1022 (2000). Enmon, J.L., et al., Biochemistry 39(15):4309-4319 (2000). de Beer, T., et al., Science 281(5381):1357-1360 (1998). Chen, H., et al., Nature 394(6695):793-797 (1998). Matsuda, M., et al., J. Biol. Chem. 271(24):14468-14472 (1996).