

LTA4H Antibody (Center)

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP2844c

Specification

LTA4H Antibody (Center) - Product Information

Application WB, IHC-P, IF,E

Primary Accession
Reactivity
Host
Clonality
Isotype
Calculated MW
Antigen Region
P09960
Human
Rabbit
Polyclonal
Rabbit IgG
C9285
Antigen Region

LTA4H Antibody (Center) - Additional Information

Gene ID 4048

Other Names

Leukotriene A-4 hydrolase, LTA-4 hydrolase, Leukotriene A(4) hydrolase, LTA4H, LTA4

Target/Specificity

This LTA4H antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 163-191 amino acids from the Central region of human LTA4H.

Dilution

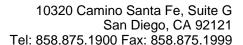
WB~~1:1000 IHC-P~~1:50~100 IF~~1:10~50

E~~Use at an assay dependent concentration.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage


Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

LTA4H Antibody (Center) is for research use only and not for use in diagnostic or therapeutic procedures.

LTA4H Antibody (Center) - Protein Information

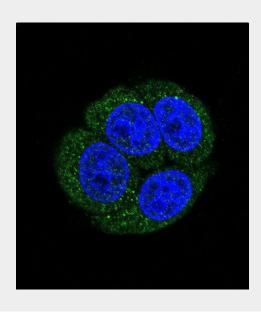
Name LTA4H

Synonyms LTA4

Function Bifunctional zinc metalloenzyme that comprises both epoxide hydrolase (EH) and aminopeptidase activities. Acts as an epoxide hydrolase to catalyze the conversion of LTA4 to the pro-inflammatory mediator leukotriene B4 (LTB4) (PubMed:11917124, PubMed:12207002, PubMed:15078870, PubMed:18804029, PubMed:1897988, PubMed:1975494, PubMed:2244921). Also has aminopeptidase activity, with high affinity for N-terminal arginines of various synthetic tripeptides (PubMed:18804029, PubMed:20813919). In addition to its pro-inflammatory EH activity, may also counteract inflammation by its aminopeptidase activity, which inactivates by cleavage another neutrophil attractant, the tripeptide Pro-Gly-Pro (PGP), a bioactive fragment of collagen generated by the action of matrix metalloproteinase-9 (MMP9) and prolylendopeptidase (PREPL) (PubMed:20813919, PubMed:24591641). Involved also in the biosynthesis of resolvin E1 and 18S-resolvin E1 from eicosapentaenoic acid, two lipid mediators that show potent anti-inflammatory and pro-resolving actions (PubMed:21206090).

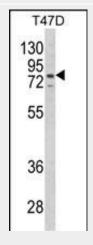
Cellular Location Cytoplasm.

Tissue Location

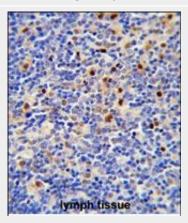

Isoform 1 and isoform 2 are expressed in monocytes, lymphocytes, neutrophils, reticulocytes, platelets and fibroblasts

LTA4H Antibody (Center) - Protocols

Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

LTA4H Antibody (Center) - Images



Confocal immunofluorescent analysis of LTA4H Antibody (Center)(Cat#AP2844c) with Hela cell followed by Alexa Fluor 488-conjugated goat anti-rabbit IgG (green).DAPI was used to stain the cell nuclear (blue).

Western blot analysis of LTA4H Antibody (Center) (Cat. #AP2844c) in T47D cell line lysates (35ug/lane). LTA4H (arrow) was detected using the purified Pab.

Formalin-fixed and paraffin-embedded human lymph tissue reacted with LTA4H Antibody (Center) (Cat. #AP2844c), which was peroxidase-conjugated to the secondary antibody, followed by DAB staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated.

LTA4H Antibody (Center) - Background

DHCR24 hydrolyzes an epoxide moiety of leukotriene A4 (LTA-4) to form leukotriene B4 (LTB-4). This enzyme also has some peptidase activity.

LTA4H Antibody (Center) - References

Bevan, S., Stroke 40 (3), 696-701 (2009) Crosslin, D.R., Hum. Genet. 125 (2), 217-229 (2009) Huston, A.L., Biochim. Biophys. Acta 1784 (11), 1865-1872 (2008) Rybina, I.V., J. Biol. Chem. 272 (50), 31865-31871 (1997)