

PSMD7 Antibody (N-term)
Purified Rabbit Polyclonal Antibody (Pab)
Catalog # AP2916a

Specification

PSMD7 Antibody (N-term) - Product Information

Application	FC, IHC-P, WB,E
Primary Accession	P51665
Other Accession	P26516 , Q3ZBD0
Reactivity	Human
Predicted	Bovine, Mouse
Host	Rabbit
Clonality	Polyclonal
Isotype	Rabbit IgG
Calculated MW	37025
Antigen Region	6-34

PSMD7 Antibody (N-term) - Additional Information

Gene ID 5713

Other Names

26S proteasome non-ATPase regulatory subunit 7, 26S proteasome regulatory subunit RPN8, 26S proteasome regulatory subunit S12, Mov34 protein homolog, Proteasome subunit p40, PSMD7, MOV34L

Target/Specificity

This PSMD7 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 6-34 amino acids from the N-terminal region of human PSMD7.

Dilution

FC~~1:10~50
IHC-P~~1:50~100
WB~~1:1000
E~~Use at an assay dependent concentration.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation followed by dialysis against PBS.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

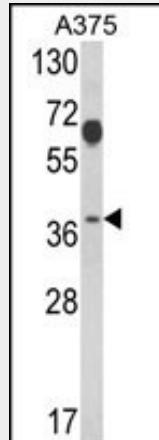
Precautions

PSMD7 Antibody (N-term) is for research use only and not for use in diagnostic or therapeutic procedures.

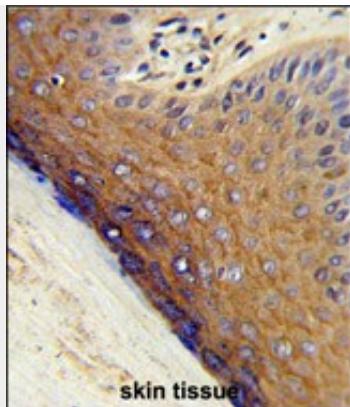
PSMD7 Antibody (N-term) - Protein Information

Name PSMD7

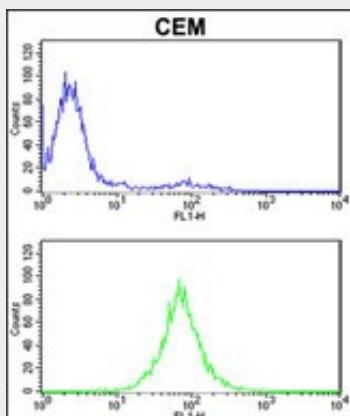
Synonyms MOV34L


Function Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair.

PSMD7 Antibody (N-term) - Protocols


Provided below are standard protocols that you may find useful for product applications.

- [Western Blot](#)
- [Blocking Peptides](#)
- [Dot Blot](#)
- [Immunohistochemistry](#)
- [Immunofluorescence](#)
- [Immunoprecipitation](#)
- [Flow Cytometry](#)
- [Cell Culture](#)


PSMD7 Antibody (N-term) - Images

Western blot analysis of PSMD7 Antibody (N-term) (Cat. #AP2916a) in A375 cell line lysates (35ug/lane). PSMD7 (arrow) was detected using the purified Pab.

Formalin-fixed and paraffin-embedded human skin tissue reacted with PSMD7 Antibody (N-term), which was peroxidase-conjugated to the secondary antibody, followed by DAB staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated.

PSMD7 Antibody (N-term) (Cat. #AP2916a) flow cytometric analysis of CEM cells (bottom histogram) compared to a negative control cell (top histogram). FITC-conjugated goat-anti-rabbit secondary antibodies were used for the analysis.

PSMD7 Antibody (N-term) - Background

PSMD7 acts as a regulatory subunit of the 26S proteasome which is involved in the ATP-dependent degradation of ubiquitinated proteins.

PSMD7 Antibody (N-term) - References

Dastani,Z., et.al., Eur. J. Hum. Genet. (2009) In press
Sanches,M., et.al., J. Mol. Biol. 370 (5), 846-855 (2007)