Phospho-HER2(Y1112) Antibody Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP3120a ### **Specification** ### Phospho-HER2(Y1112) Antibody - Product Information Application WB, DB,E Primary Accession P04626 Reactivity Human Host Rabbit Clonality Polyclonal Isotype Rabbit IgG Calculated MW 137910 ## Phospho-HER2(Y1112) Antibody - Additional Information ### **Gene ID 2064** ### **Other Names** Receptor tyrosine-protein kinase erbB-2, Metastatic lymph node gene 19 protein, MLN 19, Proto-oncogene Neu, Proto-oncogene c-ErbB-2, Tyrosine kinase-type cell surface receptor HER2, p185erbB2, CD340, ERBB2, HER2, MLN19, NEU, NGL ### Target/Specificity This HER2 Antibody is generated from rabbits immunized with a KLH conjugated synthetic phosphopeptide corresponding to amino acid residues surrounding Y1112 of human HER2. ## **Dilution** WB~~1:2000 DB~~1:500 E~~Use at an assay dependent concentration. #### **Format** Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. #### Storage Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. #### **Precautions** Phospho-HER2(Y1112) Antibody is for research use only and not for use in diagnostic or therapeutic procedures. ## Phospho-HER2(Y1112) Antibody - Protein Information ### Name ERBB2 ## Synonyms HER2, MLN19, NEU, NGL **Function** Protein tyrosine kinase that is part of several cell surface receptor complexes, but that apparently needs a coreceptor for ligand binding. Essential component of a neuregulin-receptor complex, although neuregulins do not interact with it alone. GP30 is a potential ligand for this receptor. Regulates outgrowth and stabilization of peripheral microtubules (MTs). Upon ERBB2 activation, the MEMO1-RHOA-DIAPH1 signaling pathway elicits the phosphorylation and thus the inhibition of GSK3B at cell membrane. This prevents the phosphorylation of APC and CLASP2, allowing its association with the cell membrane. In turn, membrane-bound APC allows the localization of MACF1 to the cell membrane, which is required for microtubule capture and stabilization. #### **Cellular Location** Cell membrane; Single-pass type I membrane protein. Cell projection, ruffle membrane; Single-pass type I membrane protein. Note=Internalized from the cell membrane in response to EGF stimulation. [Isoform 2]: Cytoplasm. Nucleus. ### **Tissue Location** Expressed in a variety of tumor tissues including primary breast tumors and tumors from small bowel, esophagus, kidney and mouth. ## Phospho-HER2(Y1112) Antibody - Protocols Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - Immunohistochemistry - Immunofluorescence - <u>Immunoprecipitation</u> - Flow Cytomety - Cell Culture ### Phospho-HER2(Y1112) Antibody - Images Western blot analysis of extracts from A431 cells,untreated or treated with EGF,100ng/ml□using # phospho HER2-Y1112 (left) or HER2 antibody(right) Dot blot analysis of Phospho-HER2-pY1112 Phospho-specific Pab (Cat. #AP3120a) on nitrocellulose membrane. 50ng of Phospho-peptide or Non Phospho-peptide per dot were adsorbed. Antibody working concentrations are 0.6ug per ml. ### Phospho-HER2(Y1112) Antibody - Background ErbB2 is a member of the epidermal growth factor (EGF) receptor family of receptor tyrosine kinases. This protein has no ligand binding domain of its own and therefore cannot bind growth factors. However, it does bind tightly to other ligand-bound EGF receptor family members to form a heterodimer, stabilizing ligand binding and enhancing kinase-mediated activation of downstream signalling pathways, such as those involving mitogen-activated protein kinase and phosphatidylinositol-3 kinase. Amplification and/or overexpression of this gene has been reported in numerous cancers, including breast and ovarian tumors. ## Phospho-HER2(Y1112) Antibody - References Provinciali, M., et al., Int. J. Cancer 115(1):36-45 (2005). Yee, L.D., et al., J. Nutr. 135(5):983-988 (2005). Beckers, J., et al., Int. J. Cancer 114(4):590-597 (2005). Brandt, B., et al., Biochem. Biophys. Res. Commun. 329(1):318-323 (2005). Ghatak, S., et al., J. Biol. Chem. 280(10):8875-8883 (2005).