

Phospho-EP300(S89) Antibody
Affinity Purified Rabbit Polyclonal Antibody (Pab)
Catalog # AP3197a

Specification

Phospho-EP300(S89) Antibody - Product Information

Application	WB, IHC-P, DB,E
Primary Accession	Q09472
Other Accession	B2RWS6
Reactivity	Human
Predicted	Mouse
Host	Rabbit
Clonality	Polyclonal
Isotype	Rabbit IgG
Calculated MW	264161

Phospho-EP300(S89) Antibody - Additional Information

Gene ID 2033

Other Names

Histone acetyltransferase p300, p300 HAT, E1A-associated protein p300, EP300, P300

Target/Specificity

This EP300 Antibody is generated from rabbits immunized with a KLH conjugated synthetic phosphopeptide corresponding to amino acid residues surrounding S89 of human EP300.

Dilution

WB~~1:1000

IHC-P~~1:50~100

DB~~1:500

E~~Use at an assay dependent concentration.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

Phospho-EP300(S89) Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

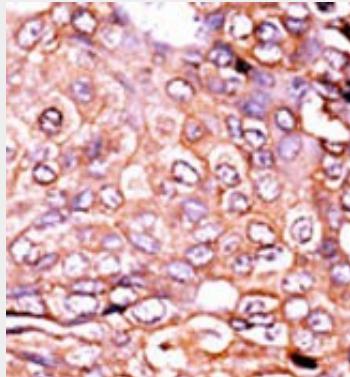
Phospho-EP300(S89) Antibody - Protein Information

Name EP300 {ECO:0000303|PubMed:15706485, ECO:0000312|HGNC:HGNC:3373}

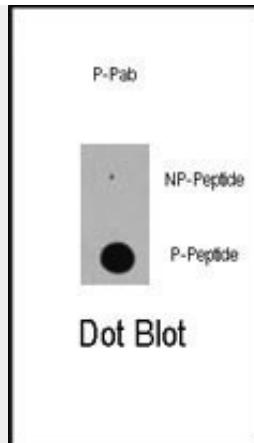
Function Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:[23415232](#), PubMed:[23934153](#), PubMed:[8945521](#)). Acetylates all four core histones in nucleosomes (PubMed:[23415232](#), PubMed:[23934153](#), PubMed:[8945521](#)). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:[23415232](#), PubMed:[23934153](#), PubMed:[8945521](#)). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:[23415232](#)). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:[21131905](#), PubMed:[23911289](#)). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6- methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:[37731000](#)). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:[37731000](#)). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:[12929931](#), PubMed:[15653507](#), PubMed:[16285960](#), PubMed:[16762839](#), PubMed:[18722353](#), PubMed:[18782771](#), PubMed:[26990986](#)). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:[12929931](#)). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:[18722353](#)). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:[11511361](#), PubMed:[15448695](#)). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:[18451878](#)). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:[16762839](#)). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:[12586840](#)). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:[14752053](#)). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:[15890677](#)). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:[15653507](#), PubMed:[16285960](#), PubMed:[18782771](#)). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:[12402037](#)). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:[14645221](#)). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:[16617102](#)). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:[20955178](#)). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:[24939902](#)). Acetylates MEF2D (PubMed:[21030595](#)). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:[20810990](#)). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:[30193097](#)). Acetylates RXRA and RXRG (PubMed:[17761950](#)). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:[24120661](#)). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:[30197302](#), PubMed:[32561715](#)). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:[22084251](#)). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:[8917528](#)). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:[17267393](#), PubMed:[25818647](#), PubMed:[29775581](#), PubMed:[31645732](#)). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:[25818647](#)). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA)

substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:[25818647](#)). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:[17267393](#)). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:[31645732](#)). Acts as a protein-lysine 2- hydroxyisobutyryltransferase; regulates glycolysis by mediating 2- hydroxyisobutyrylation of glycolytic enzymes (PubMed:[29775581](#)). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:[25514493](#)).

Cellular Location


Cytoplasm. Nucleus. Chromosome Note=Localizes to active chromatin: Colocalizes with histone H3 acetylated and/or crotonylated at 'Lys-18' (H3K18ac and H3K18cr, respectively) (PubMed:[25818647](#)). In the presence of ALX1 relocates from the cytoplasm to the nucleus. Colocalizes with ROCK2 in the nucleus (PubMed:[12929931](#)). Localizes to sites of DNA damage (PubMed:[25593309](#)).

Phospho-EP300(S89) Antibody - Protocols


Provided below are standard protocols that you may find useful for product applications.

- [Western Blot](#)
- [Blocking Peptides](#)
- [Dot Blot](#)
- [Immunohistochemistry](#)
- [Immunofluorescence](#)
- [Immunoprecipitation](#)
- [Flow Cytometry](#)
- [Cell Culture](#)

Phospho-EP300(S89) Antibody - Images

Formalin-fixed and paraffin-embedded human cancer tissue reacted with the primary antibody, which was peroxidase-conjugated to the secondary antibody, followed by AEC staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated. BC = breast carcinoma; HC = hepatocarcinoma.

Dot blot analysis of anti-Phospho-EP300-S89 Pab (Cat. #AP3197a) on nitrocellulose membrane. 50ng of Phospho-peptide (BP3197a) or Non Phospho-peptide per dot were adsorbed. Antibodies working concentration was 0.5ug per ml.

Phospho-EP300(S89) Antibody - Background

EP300 encodes the adenovirus E1A-associated cellular p300 transcriptional co-activator protein. p300 is related by sequence to CPB (CREB-binding protein [CREB: cyclic-AMP responsive element binding protein]), and like CPB can stimulate transcription through activation of CREB. This EP300 activity is specifically inhibited by the adenovirus oncoprotein E1A. EP300 has also been identified as a co-activator of HIF1A (hypoxia-inducible factor 1 alpha), and thus plays a role in the stimulation of hypoxia-induced genes such as VEGF.

Phospho-EP300(S89) Antibody - References

- Finlan, L., et al., J. Biol. Chem. 279(47):49395-49405 (2004).
- Dornan, D., et al., Mol. Cell. Biol. 24(22):10083-10098 (2004).
- Jin, Y.H., et al., J. Biol. Chem. 279(28):29409-29417 (2004).
- Kung, A.L., et al., Cancer Cell 6(1):33-43 (2004).
- Chen, J., et al., Cell. Mol. Life Sci. 61(13):1675-1683 (2004).