

Phospho-RPS6KA3(S369) Antibody

Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP3462a

Specification

Phospho-RPS6KA3(S369) Antibody - Product Information

Application Primary Accession Other Accession Reactivity Predicted Host Clonality Isotype DB,E <u>P51812</u> <u>O6PFO0</u>, <u>P18654</u> Human Mouse, Zebrafish Rabbit Polyclonal Rabbit IgG

Phospho-RPS6KA3(S369) Antibody - Additional Information

Gene ID 6197

Other Names

Ribosomal protein S6 kinase alpha-3, S6K-alpha-3, 90 kDa ribosomal protein S6 kinase 3, p90-RSK 3, p90RSK3, Insulin-stimulated protein kinase 1, ISPK-1, MAP kinase-activated protein kinase 1b, MAPK-activated protein kinase 1b, MAPKAP kinase 1b, MAPKAPK-1b, Ribosomal S6 kinase 2, RSK-2, pp90RSK2, RPS6KA3, ISPK1, MAPKAPK1B, RSK2

Target/Specificity

This RPS6KA3 Antibody is generated from rabbits immunized with a KLH conjugated synthetic phosphopeptide corresponding to amino acid residues surrounding S369 of human RPS6KA3.

Dilution

DB~~1:500

E~~Use at an assay dependent concentration.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

Phospho-RPS6KA3(S369) Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Phospho-RPS6KA3(S369) Antibody - Protein Information

Name RPS6KA3

Synonyms ISPK1, MAPKAPK1B, RSK2

Function Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro- apoptotic function of BAD and DAPK1 (PubMed: 16213824, PubMed:16223362, PubMed:17360704, PubMed:9770464). In fibroblast, is required for EGFstimulated phosphorylation of CREB1 and histone H3 at 'Ser-10', which results in the subsequent transcriptional activation of several immediate-early genes (PubMed: 10436156, PubMed: 9770464). In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP (PubMed: 16223362). Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity (PubMed: 8250835). Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the preinitiation complex (PubMed:<u>17360704</u>). In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation (PubMed:<u>18508509</u>, PubMed:<u>18813292</u>). Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin- sensitive signaling independently of the PI3K/AKT pathway (PubMed:<u>18722121</u>). Mediates cell survival by phosphorylating the pro- apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function (PubMed:<u>16213824</u>). Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4) (PubMed: 18508509, PubMed:<u>18813292</u>). Is involved in cell cycle regulation by phosphorylating the CDK inhibitor CDKN1B, which promotes CDKN1B association with 14-3-3 proteins and prevents its translocation to the nucleus and inhibition of G1 progression (By similarity). In LPS-stimulated dendritic cells, is involved in TLR4- induced macropinocytosis, and in myeloma cells, acts as effector of FGFR3-mediated transformation signaling, after direct phosphorylation at Tyr-529 by FGFR3 (By similarity). Negatively regulates EGF-induced MAPK1/3 phosphorylation via phosphorylation of SOS1 (By similarity). Phosphorylates SOS1 at 'Ser-1134' and 'Ser-1161' that create YWHAB and YWHAE binding sites and which contribute to the negative regulation of MAPK1/3 phosphorylation (By similarity). Phosphorylates EPHA2 at 'Ser- 897', the RPS6KA-EPHA2 signaling pathway controls cell migration (PubMed: <u>26158630</u>). Acts as a regulator of osteoblast differentiation by mediating phosphorylation of ATF4, thereby promoting ATF4 transactivation activity (By similarity).

Cellular Location Nucleus. Cytoplasm

Tissue Location Expressed in many tissues, highest levels in skeletal muscle

Phospho-RPS6KA3(S369) Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

Phospho-RPS6KA3(S369) Antibody - Images

Dot blot analysis of anti-RPS6KA3-pS369 Phospho-specific Pab (RB13311) on nitrocellulose membrane. 50ng of Phospho-peptide or Non Phospho-peptide per dot were adsorbed. Antibody working concentrations are 0.5ug per ml.

Phospho-RPS6KA3(S369) Antibody - Background

RSK3 is a member of the RSK (ribosomal S6 kinase) family of serine/threonine kinases. This kinase contains 2 non-identical kinase catalytic domains and phosphorylates various substrates, including members of the mitogen-activated kinase (MAPK) signalling pathway. The activity of this protein has been implicated in controlling cell growth and differentiation. Mutations in the gene have been associated with Coffin-Lowry syndrome (CLS).

Phospho-RPS6KA3(S369) Antibody - References

Yang, X., et al., Cell 117(3):387-398 (2004). Guimiot, F., et al., Gene Expr. Patterns 4(1):111-114 (2004). Zeniou, M., et al., (er) Nucleic Acids Res. 32(3):1214-1223 (2004). Vaidyanathan, H., et al., J. Biol. Chem. 278(34):32367-32372 (2003). Zhang, Y., et al., J. Biol. Chem. 278(15):12650-12659 (2003).