Phospho-mouse ERBB2(S1051) Antibody Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP3798a # **Specification** # Phospho-mouse ERBB2(S1051) Antibody - Product Information Application DB,E Primary Accession P70424 Other Accession NP 001003817.1 Reactivity Host Clonality Polyclonal Isotype Calculated MW Mouse Rabbit Polyclonal Rabbit IgG Calculated MW 138579 ### Phospho-mouse ERBB2(S1051) Antibody - Additional Information #### **Gene ID 13866** #### **Other Names** Receptor tyrosine-protein kinase erbB-2, Proto-oncogene Neu, Proto-oncogene c-ErbB-2, p185erbB2, CD340, Erbb2, Kiaa3023, Neu ### Target/Specificity This mouse ERBB2 Antibody is generated from rabbits immunized with a KLH conjugated synthetic phosphopeptide corresponding to amino acid residues surrounding S1051 of mouse ERBB2. #### **Dilution** DB~~1:500 E~~Use at an assay dependent concentration. ### **Format** Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. ### Storage Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. # **Precautions** Phospho-mouse ERBB2(S1051) Antibody is for research use only and not for use in diagnostic or therapeutic procedures. # Phospho-mouse ERBB2(S1051) Antibody - Protein Information ### Name Erbb2 Synonyms Kiaa3023, Neu **Function** Protein tyrosine kinase that is part of several cell surface receptor complexes, but that apparently needs a coreceptor for ligand binding. Essential component of a neuregulin-receptor complex, although neuregulins do not interact with it alone. GP30 is a potential ligand for this receptor. Regulates outgrowth and stabilization of peripheral microtubules (MTs). Upon ERBB2 activation, the MEMO1-RHOA-DIAPH1 signaling pathway elicits the phosphorylation and thus the inhibition of GSK3B at cell membrane. This prevents the phosphorylation of APC and CLASP2, allowing its association with the cell membrane. In turn, membrane-bound APC allows the localization of MACF1 to the cell membrane, which is required for microtubule capture and stabilization (By similarity). #### **Cellular Location** Cell membrane {ECO:0000250|UniProtKB:P04626}; Single-pass type I membrane protein {ECO:0000250|UniProtKB:P04626} Cell projection, ruffle membrane {ECO:0000250|UniProtKB:P04626}; Single-pass type I membrane protein {ECO:0000250|UniProtKB:P04626} Early endosome {ECO:0000250|UniProtKB:P04626}. Cytoplasm, perinuclear region {ECO:0000250|UniProtKB:P04626}. Nucleus {ECO:0000250|UniProtKB:P04626}. Note=Translocation to the nucleus requires endocytosis, probably endosomal sorting and is mediated by importin beta-1/KPNB1. Also detected in endosome-to-TGN retrograde vesicles. Internalized from the cell membrane in response to EGF stimulation. {ECO:0000250|UniProtKB:P04626} #### **Tissue Location** Expressed predominantly in uterine epithelial cells. In the muscle, expression localizes to the synaptic sites of muscle fibers # Phospho-mouse ERBB2(S1051) Antibody - Protocols Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - Immunohistochemistry - <u>Immunofluorescence</u> - Immunoprecipitation - Flow Cytomety - Cell Culture # Phospho-mouse ERBB2(S1051) Antibody - Images Dot blot analysis of mouse ERBB2 Antibody (Phospho S1051) Phospho-specific Pab (Cat. #AP3798a) on nitrocellulose membrane. 50ng of Phospho-peptide or Non Phospho-peptide per dot were adsorbed. Antibody working concentrations are 0.6ug per ml. # Phospho-mouse ERBB2(S1051) Antibody - Background Tel: 858.875.1900 Fax: 858.875.1999 Essential component of a neuregulin-receptor complex, although neuregulins do not interact with it alone. GP30 is a potential ligand for this receptor. Binds to the 5'-TCAAATTC-3' sequence in the MT-CO2 promoter and activates its transcription (By similarity). # Phospho-mouse ERBB2(S1051) Antibody - References Cabodi, S., et al. FASEB J. 24(10):3796-3808(2010) Johnson, E., et al. J. Biol. Chem. 285(38):29491-29501(2010) Huck, L., et al. Proc. Natl. Acad. Sci. U.S.A. 107(35):15559-15564(2010) Chuang, T.D., et al. J. Biol. Chem. 285(31):23598-23606(2010) Simeone, L., et al. J. Neurosci. 30(19):6620-6634(2010)