EFNA1 Antibody Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP50678 # **Specification** # **EFNA1 Antibody - Product Information** Application IF, WB Primary Accession P20827 Reactivity Human, Mouse, Rat Host Rabbit Clonality Polyclonal Calculated MW 24 21 KDa # **EFNA1** Antibody - Additional Information #### **Gene ID 1942** Antigen Region ### **Other Names** Ephrin-A1, EPH-related receptor tyrosine kinase ligand 1, LERK-1, Immediate early response protein B61, Tumor necrosis factor alpha-induced protein 4, TNF alpha-induced protein 4, Ephrin-A1, secreted form, EFNA1, EPLG1, LERK1, TNFAIP4 83-115 ### **Dilution** IF~~1:100 WB~~1:1000 ### **Format** Rabbit IgG in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.09% (W/V) sodium azide and 50% glycerol. # **Storage Conditions** -20°C # **EFNA1** Antibody - Protein Information ### Name EFNA1 Synonyms EPLG1, LERK1, TNFAIP4 ### **Function** Cell surface GPI-bound ligand for Eph receptors, a family of receptor tyrosine kinases which are crucial for migration, repulsion and adhesion during neuronal, vascular and epithelial development. Binds promiscuously Eph receptors residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. Plays an important role in angiogenesis and tumor neovascularization. The recruitment of VAV2, VAV3 and PI3-kinase p85 subunit by phosphorylated EPHA2 is critical for EFNA1-induced RAC1 GTPase activation and vascular endothelial cell migration and assembly. Exerts anti-oncogenic effects in tumor cells through activation and down- regulation of EPHA2. Activates EPHA2 by inducing tyrosine phosphorylation which leads to its internalization and degradation. Acts as a negative regulator in the tumorigenesis of gliomas by down- regulating EPHA2 and FAK. Can evoke collapse of embryonic neuronal growth cone and regulates dendritic spine morphogenesis. ### **Cellular Location** Cell membrane; Lipid-anchor, GPI-anchor ### **Tissue Location** Brain. Down-regulated in primary glioma tissues compared to the normal tissues. The soluble monomeric form is expressed in the glioblastoma multiforme (GBM) and breast cancer cells (at protein level). # **EFNA1 Antibody - Protocols** Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - <u>Immunohistochemistry</u> - Immunofluorescence - <u>Immunoprecipitation</u> - Flow Cytomety - Cell Culture # **EFNA1 Antibody - Images** Immunofluorescence analysis of HeLa cells, using EFNA1 antibody. Western blot analysis of lysate from MCF7 cell line, using EFNA1 Antibody (AP50678). AP50678 was diluted at 1:1000. A goat anti-rabbit IgG H&L(HRP) at 1:5000 dilution was used as the secondary antibody. Lysate at 35ug. # **EFNA1** Antibody - Background Cell surface GPI-bound ligand for Eph receptors, a family of receptor tyrosine kinases which are crucial for migration, repulsion and adhesion during neuronal, vascular and epithelial development. Binds promiscuously Eph receptors residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. Plays an important role in angiogenesis and tumor neovascularization. The recruitment of VAV2, VAV3 and PI3-kinase p85 subunit by phosphorylated EPHA2 is critical for EFNA1-induced RAC1 GTPase activation and vascular endothelial cell migration and assembly. Exerts anti-oncogenic effects in tumor cells through activation and down-regulation of EPHA2. Activates EPHA2 by inducing tyrosine phosphorylation which leads to its internalization and degradation. Acts as a negative regulator in the tumorigenesis of gliomas by down-regulating EPHA2 and FAK. Can evoke collapse of embryonic neuronal growth cone and regulates dendritic spine morphogenesis. # **EFNA1 Antibody - References** Holzman L.B.,et al.Mol. Cell. Biol. 10:5830-5838(1990). Ebert L.,et al.Submitted (JUN-2004) to the EMBL/GenBank/DDBJ databases. Gregory S.G.,et al.Nature 441:315-321(2006). Mural R.J.,et al.Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases. Zhang Z.,et al.Protein Sci. 13:2819-2824(2004).