

ADAR2 Antibody

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP50962

Specification

ADAR2 Antibody - Product Information

Application
Primary Accession
Reactivity
Host
Clonality
Calculated MW

WB, ICC, IHC-P, E
P78563
Human, Mouse, Rat
Rabbit
Polyclonal
80 KDa

ADAR2 Antibody - Additional Information

Gene ID 104

Other Names

Double-stranded RNA-specific editase 1, RNA-editing deaminase 1, RNA-editing enzyme 1, dsRNA adenosine deaminase, ADARB1, ADAR2, DRADA2, RED1

Dilution

WB~~1:1000 ICC~~N/A IHC-P~~N/A E~~N/A

Format

0.01M PBS, pH 7.2, 0.09% (W/V) Sodium azide, Glycerol 50%

Storage

Store at -20 °C.Stable for 12 months from date of receipt

ADAR2 Antibody - Protein Information

Name ADARB1 (HGNC:226)

Function

Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing. This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2 and GRIK2) and serotonin (HTR2C),

GABA receptor (GABRA3) and potassium voltage-gated channel (KCNA1). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alter their functional activities. Edits GRIA2 at both the Q/R and R/G sites efficiently but converts the adenosine in hotspot1 much less efficiently. Can exert a proviral effect towards human immunodeficiency virus type 1 (HIV-1) and enhances its replication via both an editing-dependent and editing-independent mechanism. The former involves editing of adenosines in the 5'UTR while the latter occurs via suppression of EIF2AK2/PKR activation and function. Can inhibit cell proliferation and migration and can stimulate exocytosis.

Cellular Location

Nucleus. Nucleus, nucleolus. Note=Shuttles between nucleoli and the nucleoplasm. [Isoform 2]: Nucleus. Nucleus, nucleolus

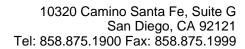
Tissue Location

Highly expressed in brain and heart and at lower levels in placenta. Fair expression in lung, liver and kidney. Detected in brain, heart, kidney, lung and liver (at protein level)

ADAR2 Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture


ADAR2 Antibody - Images

ADAR2 Antibody - Background

Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing. This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer- associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2 and GRIK2) and serotonin (HTR2C), GABA receptor (GABRA3) and potassium voltage-gated channel (KCNA1). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alter their functional activities. Edits GRIA2 at both the Q/R and R/G sites efficiently but converts the adenosine in hotspot1 much less efficiently. Can exert a proviral effect towards human immunodeficiency virus type 1 (HIV-1) and enhances its replication via both an editing-dependent and editing-independent mechanism. The former involves editing of adenosines in the 5'UTR while the latter occurs via suppression of EIF2AK2/PKR activation and function. Can inhibit cell proliferation and migration and can stimulate exocytosis.

ADAR2 Antibody - References

Gerber A., et al.RNA 3:453-463(1997).

Mittaz L.,et al.Genomics 41:210-217(1997). Lai F.,et al.Mol. Cell. Biol. 17:2413-2424(1997). Villard L.,et al.Somat. Cell Mol. Genet. 23:135-145(1997). Slavov D.,et al.Gene 299:83-94(2002).