

ATP5A1 Antibody

Purified Rabbit Polyclonal Antibody (Pab)
Catalog # AP51004

Specification

ATP5A1 Antibody - Product Information

Application
Primary Accession
Reactivity
Host
Clonality
Calculated MW
Antigen Region

WB
P25705
Human, Mouse, Rat
Rabbit
Polyclonal
60 KDa
191 - 250

ATP5A1 Antibody - Additional Information

Gene ID 498

Other Names

ATP synthase subunit alpha, mitochondrial, ATP5A1, ATP5A, ATP5AL2, ATPM

Target/Specificity

KLH conjugated synthetic peptide derived from human ATP5A1

Dilution

WB~~ 1:1000

Format

0.01M PBS, pH 7.2, 0.09% (W/V) Sodium azide, Glycerol 50%

Storage

Store at -20 °C.Stable for 12 months from date of receipt

ATP5A1 Antibody - Protein Information

Name ATP5F1A (HGNC:823)

Function

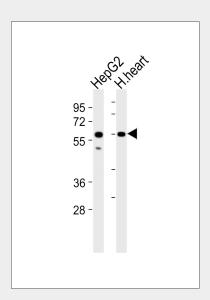
Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Subunits alpha and beta form the catalytic core in F(1). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits. Subunit alpha does not bear the catalytic high-affinity ATP-binding sites (By similarity). Binds the bacterial siderophore enterobactin and can

promote mitochondrial accumulation of enterobactin-derived iron ions (PubMed:30146159).

Cellular Location

Mitochondrion. Mitochondrion inner membrane {ECO:0000250|UniProtKB:P19483}; Peripheral membrane protein {ECO:0000250|UniProtKB:P19483}; Matrix side {ECO:0000250|UniProtKB:P19483}. Cell membrane; Peripheral membrane protein; Extracellular side. Note=Colocalizes with HRG on the cell surface of T-cells (PubMed:19285951).

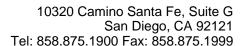
Tissue Location


Fetal lung, heart, liver, gut and kidney. Expressed at higher levels in the fetal brain, retina and spinal cord

ATP5A1 Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture


ATP5A1 Antibody - Images

All lanes : Anti-ATP5A1 Antibody at 1:1000 dilution Lane 1: HepG2 whole cell lysates Lane 2: H.heart tissue lysates Lysates/proteins at 20 μ g per lane. Secondary Goat Anti-Rabbit IgG, (H+L),Peroxidase conjugated at 1/10000 dilution Predicted band size : 60 kDa Blocking/Dilution buffer: 5% NFDM/TBST.

ATP5A1 Antibody - Background

Mitochondrial membrane ATP synthase (F(1)F(0)) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron

transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Subunits alpha and beta form the catalytic core in F(1). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits. Subunit alpha does not bear the catalytic high-affinity ATP-binding sites (By similarity).

ATP5A1 Antibody - References

Kataoka H.,et al.Biochim. Biophys. Acta 1089:393-395(1991). Godbout R.,et al.Gene 123:195-201(1993). Akiyama S.,et al.Biochim. Biophys. Acta 1219:129-140(1994). Kalnine N.,et al.Submitted (MAY-2003) to the EMBL/GenBank/DDBJ databases. Ota T.,et al.Nat. Genet. 36:40-45(2004).