

GRB10 (pY67) Antibody

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP51648

Specification

GRB10 (pY67) Antibody - Product Information

Application Primary Accession Reactivity Host Clonality Calculated MW WB, ICC, E <u>Q13322</u> Human, Mouse, Rat Rabbit Polyclonal 60 KDa

GRB10 (pY67) Antibody - Additional Information

Gene ID 2887

Other Names Growth factor receptor-bound protein 10, GRB10 adapter protein, Insulin receptor-binding protein Grb-IR, GRB10, GRBIR, KIAA0207

Target/Specificity KLH-conjugated synthetic peptide encompassing a sequence within the N-term region of human GRB10. The exact sequence is proprietary.

Dilution WB~~1:1000 ICC~~N/A E~~N/A

Format 0.01M PBS, pH 7.2, 0.09% (W/V) Sodium azide, Glycerol 50%

Storage Store at -20 °C.Stable for 12 months from date of receipt

GRB10 (pY67) Antibody - Protein Information

Name GRB10

Synonyms GRBIR, KIAA0207

Function

Adapter protein which modulates coupling of a number of cell surface receptor kinases with specific signaling pathways. Binds to, and suppress signals from, activated receptors tyrosine kinases, including the insulin (INSR) and insulin-like growth factor (IGF1R) receptors. The inhibitory effect can be achieved by 2 mechanisms: interference with the signaling pathway and increased receptor degradation. Delays and reduces AKT1 phosphorylation in response to insulin stimulation.

Blocks association between INSR and IRS1 and IRS2 and prevents insulin-stimulated IRS1 and IRS2 tyrosine phosphorylation. Recruits NEDD4 to IGF1R, leading to IGF1R ubiquitination, increased internalization and degradation by both the proteasomal and lysosomal pathways. May play a role in mediating insulin-stimulated ubiquitination of INSR, leading to proteasomal degradation. Negatively regulates Wnt signaling by interacting with LRP6 intracellular portion and interfering with the binding of AXIN1 to LRP6. Positive regulator of the KDR/VEGFR-2 signaling pathway. May inhibit NEDD4-mediated degradation of KDR/VEGFR-2.

Cellular Location

Cytoplasm. Note=When complexed with NEDD4 and IGF1R, follows IGF1R internalization, remaining associated with early endosomes. Uncouples from IGF1R-containing endosomes before the sorting of the receptor to the lysosomal compartment (By similarity).

Tissue Location

Widely expressed in fetal and adult tissues, including fetal and postnatal liver, lung, kidney, skeletal muscle, heart, spleen, skin and brain.

GRB10 (pY67) Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

GRB10 (pY67) Antibody - Images

GRB10 (pY67) Antibody - Background

Adapter protein which modulates coupling of a number of cell surface receptor kinases with specific signaling pathways. Binds to, and suppress signals from, activated receptors tyrosine kinases, including the insulin (INSR) and insulin-like growth factor (IGF1R) receptors. The inhibitory effect can be achieved by 2 mechanisms: interference with the signaling pathway and increased receptor degradation. Delays and reduces AKT1 phosphorylation in response to insulin stimulation. Blocks association between INSR and IRS1 and IRS2 and prevents insulin- stimulated IRS1 and IRS2 tyrosine phosphorylation. Recruits NEDD4 to IGF1R, leading to IGF1R ubiquitination, increased internalization and degradation by both the proteasomal and lysosomal pathways. May play a role in mediating insulin- stimulated ubiquitination of INSR, leading to proteasomal degradation. Negatively regulates Wnt signaling by interacting with LRP6 intracellular portion and interfering with the binding of AXIN1 to LRP6. Positive regulator of the KDR/VEGFR-2 signaling pathway. May inhibit NEDD4-mediated degradation of KDR/VEGFR-2.

GRB10 (pY67) Antibody - References

Liu F.,et al.Proc. Natl. Acad. Sci. U.S.A. 92:10287-10291(1995). O'Neill T.J.,et al.J. Biol. Chem. 271:22506-22513(1996). Frantz J.D.,et al.J. Biol. Chem. 272:2659-2667(1997). Dong L.Q.,et al.J. Biol. Chem. 272:29104-29112(1997). Nantel A.,et al.J. Biol. Chem. 273:10475-10484(1998).