## Mst1/2 (Phospho-Thr183) Antibody Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP52401 ## **Specification** ## Mst1/2 (Phospho-Thr183) Antibody - Product Information Application WB, IHC Primary Accession Q13188 Other Accession Q13043 Reactivity Human, Rat Host Rabbit Clonality Polyclonal #### Mst1/2 (Phospho-Thr183) Antibody - Additional Information ## **Gene ID 6788** #### **Other Names** Serine/threonine-protein kinase 3, Mammalian STE20-like protein kinase 2, MST-2, STE20-like kinase MST2, Serine/threonine-protein kinase Krs-1, Serine/threonine-protein kinase 3 36kDa subunit, MST2/N, Serine/threonine-protein kinase 3 20kDa subunit, MST2/C, STK3, KRS1, MST2 ## **Dilution** WB~~1:1000 IHC~~1:50~100 #### **Format** Rabbit IgG in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.09% (W/V) sodium azide and 50% glycerol. # **Storage Conditions** -20°C # Mst1/2 (Phospho-Thr183) Antibody - Protein Information ## Name STK3 (HGNC:11406) #### **Function** Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation (PubMed:<a href="http://www.uniprot.org/citations/11278283" target="\_blank">11278283</a>, PubMed:<a href="http://www.uniprot.org/citations/8566796" target="\_blank">8566796</a>, PubMed:<a href="http://www.uniprot.org/citations/8816758" target="\_blank">8816758</a>). Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:<a href="http://www.uniprot.org/citations/15688006" target=" blank">15688006</a>, PubMed:<a href="http://www.uniprot.org/citations/16930133" target="blank">16930133</a>, PubMed:<a href="http://www.uniprot.org/citations/23972470" target="\_blank">23972470</a>, PubMed:<a href="http://www.uniprot.org/citations/28087714" target="\_blank">28087714</a>, PubMed:<a href="http://www.uniprot.org/citations/29063833" target="blank">29063833</a>, PubMed:<a href="http://www.uniprot.org/citations/30622739" target="blank">30622739</a>). Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed: <a $href="http://www.uniprot.org/citations/15688006" \ target="\_blank">15688006</a>, \ PubMed:<a$ href="http://www.uniprot.org/citations/16930133" target="\_blank">16930133</a>, PubMed:<a href="http://www.uniprot.org/citations/23972470" target="\_blank">23972470</a>, PubMed:<a href="http://www.uniprot.org/citations/28087714" target="blank">28087714</a>). STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation. Phosphorylates NKX2-1 (By similarity). Phosphorylates NEK2 and plays a role in centrosome disjunction by regulating the localization of NEK2 to centrosome, and its ability to phosphorylate CROCC and CEP250 (PubMed: <a href="http://www.uniprot.org/citations/21076410" target=" blank">21076410</a>, PubMed:<a href="http://www.uniprot.org/citations/21723128" target=" blank">21723128</a>). In conjunction with SAV1, activates the transcriptional activity of ESR1 through the modulation of its phosphorylation (PubMed: <a href="http://www.uniprot.org/citations/21104395" target=" blank">21104395</a>). Positively regulates RAF1 activation via suppression of the inhibitory phosphorylation of RAF1 on 'Ser-259' (PubMed:<a href="http://www.uniprot.org/citations/20212043" target=" blank">20212043</a>). Phosphorylates MOBKL1A and RASSF2 (PubMed:<a href="http://www.uniprot.org/citations/19525978" target=" blank">19525978</a>). Phosphorylates MOBKL1B on 'Thr- 74'. Acts cooperatively with MOBKL1B to activate STK38 (PubMed:<a href="http://www.uniprot.org/citations/18328708" target=" blank">18328708</a>, PubMed:<a href="http://www.uniprot.org/citations/18362890" target=" blank">18362890</a>). # **Cellular Location** Cytoplasm. Nucleus Cytoplasm, cytoskeleton, microtubule organizing center, centrosome. Note=The caspase-cleaved form cycles between nucleus and cytoplasm (PubMed:11278283, PubMed:19525978) Phosphorylation at Thr-117 leads to inhibition of nuclear translocation (PubMed:19525978). ## **Tissue Location** Expressed at high levels in adult kidney, skeletal and placenta tissues and at very low levels in adult heart, lung and brain tissues. ## Mst1/2 (Phospho-Thr183) Antibody - Protocols Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - <u>Immunohistochemistry</u> - <u>Immunofluorescence</u> - Immunoprecipitation - Flow Cytomety - Cell Culture #### Mst1/2 (Phospho-Thr183) Antibody - Images Western blot analysis of extracts from 293 cells, treated with H2O2 (100uM, 15mins), using Mst1/2 (Phospho-Thr183) antibody. Immunohistochemistry analysis of paraffin-embedded human brain tissue, using Mst1/2 (Phospho-Thr183) antibody. # Mst1/2 (Phospho-Thr183) Antibody - Background Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation. Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation. Phosphorylates NKX2-1 (By similarity). Phosphorylates NEK2 and plays a role in centrosome disjunction by regulating the localization of NEK2 to centrosome, and its ability to phosphorylate CROCC and CEP250. In conjunction with SAV1, activates the transcriptional activity of ESR1 through the modulation of its phosphorylation. Positively regulates RAF1 activation via suppression of the inhibitory phosphorylation of RAF1 on 'Ser-259'. Phosphorylates MOBKL1A and RASSF2. Phosphorylates MOBKL1B on 'Thr-74'. Acts cooperatively with MOBKL1B to activate STK38. # Mst1/2 (Phospho-Thr183) Antibody - References Creasy C.L., et al. Gene 167:303-306(1995). Taylor L.K., et al. Proc. Natl. Acad. Sci. U.S.A. 93:10099-10104(1996). Ota T., et al. Nat. Genet. 36:40-45(2004). Nusbaum C., et al. Nature 439:331-335(2006). Mural R.J., et al. Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases.