

GAPDH Antibody

Purified Mouse Monoclonal Antibody (Mab)
Catalog # AP52680

Specification

GAPDH Antibody - Product Information

Application WB
Primary Accession P04406

Reactivity
Host
Rat, Human, Mouse, Hamster, Monkey
Mouse

Clonality Monoclonal Isotype IgM

Conjugate Unconjugated

Immunogen Purified recombinant human GAPDH protein fragments expressed in E.coli.

Purification Affinity Purified

Calculated MW: 36 kDa; Observed MW: 36

kDa KDa

GAPDH Antibody - Additional Information

Gene ID 2597

Other Names

38 kDa BFA-dependent ADP-ribosylation substrate; aging associated gene 9 protein; Aging-associated gene 9 protein; BARS-38; cb609; EC 1.2.1.12; G3P_HUMAN; G3PD; G3PDH; GAPDH; GAPDH; Glyceraldehyde 3 phosphate dehydrogenase; Glyceraldehyde 3 phosphate dehydrogenase liver; Glyceraldehyde 3 phosphate dehydrogenase muscle; Glyceraldehyde-3-phosphate dehydrogenase; KNC-NDS6; MGC102544; MGC 102546; MGC103190; MGC103191; MGC105239; MGC127711; MGC88685; OCAS, p38 component; OCT1 coactivator in S phase, 38-KD component; peptidyl cysteine S nitrosylase GAPDH; Peptidyl-cysteine S-nitrosylase GAPDH; wu: fb33a10.

Dilution

WB~~1:5000

Format

Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide, pH 7.3.

Storage

Store at 4°C short term. Aliquot and store at -20°C long term. Avoid freeze/thaw cycles.

GAPDH Antibody - Protein Information

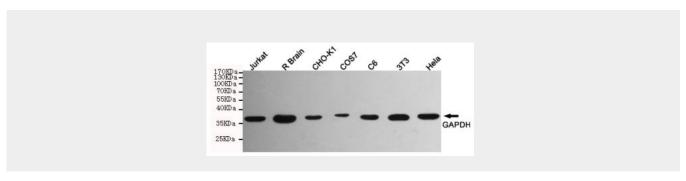
Name GAPDH {ECO:0000303|PubMed:2987855, ECO:0000312|HGNC:HGNC:4141}

Function

Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a

role in glycolysis and nuclear functions, respectively (PubMed: 11724794, PubMed:3170585). Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D- glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate (PubMed:11724794, PubMed:3170585). Modulates the organization and assembly of the cytoskeleton (By similarity). Facilitates the CHP1- dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubules (By similarity). Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes (PubMed:23071094). Upon interferon-gamma treatment assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation (PubMed:23071094). Also plays a role in innate immunity by promoting TNF-induced NF-kappa-B activation and type I interferon production, via interaction with TRAF2 and TRAF3, respectively (PubMed: 23332158, PubMed:27387501). Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis (By similarity). Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC (By similarity).

Cellular Location


Cytoplasm, cytosol. Nucleus {ECO:0000250|UniProtKB:P04797}. Cytoplasm, perinuclear region. Membrane Cytoplasm, cytoskeleton {ECO:0000250|UniProtKB:P04797} Note=Translocates to the nucleus following S-nitrosylation and interaction with SIAH1, which contains a nuclear localization signal (By similarity). Postnuclear and Perinuclear regions (PubMed:12829261) {ECO:0000250|UniProtKB:P04797, ECO:0000269|PubMed:12829261}

GAPDH Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

GAPDH Antibody - Images

Western blot detection of GAPDH in Hela,3T3,C6,COS7,CHO-K1,Rat brain and Jurkat cell lysates using GAPDH mouse mAb (1:5000 diluted). Predicted band size: 36KDa. Observed band size: 36KDa.

GAPDH Antibody - Background

Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis. Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubules (By similarity). Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Component of the GAIT (gamma interferon- activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes. Upon interferon-gamma treatment assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation.

GAPDH Antibody - References

Hanauer A., et al. EMBO J. 3:2627-2633(1984). Arcari P., et al. Nucleic Acids Res. 12:9179-9189(1984). Tso J.Y., et al. Nucleic Acids Res. 13:2485-2502(1985). Tokunaga K., et al. Cancer Res. 47:5616-5619(1987). Allen R.W., et al.J. Biol. Chem. 262:649-653(1987).