

AMPK beta 1 Antibody

Purified Mouse Monoclonal Antibody (Mab)
Catalog # AP52790

Specification

AMPK beta 1 Antibody - Product Information

Application WB, ICC, IP, IHC Primary Accession Q9Y478

Reactivity Human, Mouse

Host Mouse
Clonality Monoclonal
Isotype IgG2a

Calculated MW 38 KDa

AMPK beta 1 Antibody - Additional Information

Gene ID 5564

Other Names

1300015D22Rik;5 AMP activated protein kinase subunit beta 1;5"-AMP-activated protein kinase subunit beta-1;AAKB1_HUMAN;AMP-ACTIVATED PROTEIN KINASE, NONCATALYTIC, BETA-1; AMP-activated, noncatalytic, beta-1;AMPK;AMPK beta 1 chain;AMPK subunit beta-1;AMPK-BETA-1;AMPKb;AU021155;E430008F22;HAMPKb;MGC17785;PRKAB1.

Dilution

WB~~1:1000 ICC~~1:100 IP~~1:500 IHC~~1:100

Format

Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide, pH 7.3.

Storage

Store at 4°C short term. Aliquot and store at -20°C long term. Avoid freeze/thaw cycles.

AMPK beta 1 Antibody - Protein Information

Name PRKAB1

Synonyms AMPK

Function

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by

longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

AMPK beta 1 Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

AMPK beta 1 Antibody - Images

Immunoprecipitation analysis of Hela cell lysates using AMPK beta 1 mouse mAb.

Western blot detection of AMPK beta 1 in 3T3,Hela,PC-12,COS7 and MDA-MB-468 cell lysates using AMPK beta 1 mouse mAb (1:1000 diluted).Predicted band size:38KDa.Observed band size:38KDa.Exposure time:5min.

Immunohistochemical analysis of paraffin-embedded Breast cancer using AMPK beta 1 mouse mAb (1/200 dilution). Antigen retrieval was performed by pressure cooking in citrate buffer (pH 6.0).

Immunocytochemistry staining of HeLa cells fixed with 1% Paraformaldehyde and using AMPK beta 1 mouse mAb (dilution 1:100).

Tel: 858.875.1900 Fax: 858.875.1999

AMPK beta 1 Antibody - Background

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

AMPK beta 1 Antibody - References

Carling D., et al. Submitted (FEB-1998) to the EMBL/GenBank/DDBJ databases. Stapleton D., et al. FEBS Lett. 409:452-456(1997). Yamaqata K., et al. Submitted (JAN-1997) to the EMBL/GenBank/DDBJ databases. Wang X., et al. Submitted (JAN-1999) to the EMBL/GenBank/DDBJ databases. Scherer S.E., et al. Nature 440:346-351(2006).