

ATP5C1 Antibody

Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP53285

Specification

ATP5C1 Antibody - Product Information

Application	WB
Primary Accession	<u>P36542</u>
Reactivity	Human
Host	Rabbit
Clonality	Polyclonal
Calculated MW	33 KDa
Antigen Region	130-179

ATP5C1 Antibody - Additional Information

Gene ID 509

Other Names ATP synthase subunit gamma, mitochondrial, F-ATPase gamma subunit, ATP5C1, ATP5C, ATP5CL1

Dilution WB~~ 1:1000

Format

Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.09% (W/V) sodium azide and 50% glycerol

Storage Store at -20 °C.Stable for 12 months from date of receipt

ATP5C1 Antibody - Protein Information

Name ATP5F1C (HGNC:833)

Function

Subunit gamma, of the mitochondrial membrane ATP synthase complex (F(1)F(0) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (PubMed:37244256). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core - and a membrane F(1) domain - the membrane proton channel (PubMed:37244256). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:<a href="http://www.uniprot.org/citations/37244256"

target="_blank">37244256). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). In vivo, can only synthesize ATP although its ATP hydrolase activity can be activated artificially in

vitro (By similarity). With the central stalk subunit delta, is essential for the biogenesis of F(1) catalytic part of the ATP synthase complex namely in the formation of F1 assembly intermediate (PubMed:29499186).

Cellular Location

Mitochondrion inner membrane {ECO:0000250|UniProtKB:P05631}; Peripheral membrane protein {ECO:0000250|UniProtKB:P05631}; Matrix side {ECO:0000250|UniProtKB:P05631}

Tissue Location

Isoform Heart is expressed specifically in the heart and skeletal muscle, which require rapid energy supply. Isoform Liver is expressed in the brain, liver and kidney. Isoform Heart and Isoform Liver are expressed in the skin, intestine, stomach and aorta

ATP5C1 Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

ATP5C1 Antibody - Images

All lanes : Anti-ATP5C1 Antibody at 1:1000 dilution Lane 1: human heart lysate Lane 2: HepG2 whole cell lysate Lysates/proteins at 20 μ g per lane. Secondary Goat Anti-Rabbit lgG, (H+L),Peroxidase conjugated at 1/10000 dilution. Predicted band size : 33 kDa Blocking/Dilution buffer: 5% NFDM/TBST.

ATP5C1 Antibody - Background

Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron

transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(1) domain and the central stalk which is part of the complex rotary element. The gamma subunit protrudes into the catalytic domain formed of alpha(3)beta(3). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits.

ATP5C1 Antibody - References

Matsuda C.,et al.J. Biol. Chem. 268:24950-24958(1993). Ota T.,et al.Nat. Genet. 36:40-45(2004). Ebert L.,et al.Submitted (JUN-2004) to the EMBL/GenBank/DDBJ databases. Deloukas P.,et al.Nature 429:375-381(2004). Mural R.J.,et al.Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases.