

MAGEB2 Antibody (N-term)
Purified Rabbit Polyclonal Antibody (Pab)
Catalog # AP6172a

Specification

MAGEB2 Antibody (N-term) - Product Information

Application	WB, IHC-P,E
Primary Accession	O15479
Other Accession	NP_002355
Reactivity	Human
Host	Rabbit
Clonality	Polyclonal
Isotype	Rabbit IgG
Calculated MW	35277
Antigen Region	4-33

MAGEB2 Antibody (N-term) - Additional Information

Gene ID 4113

Other Names

Melanoma-associated antigen B2, Cancer/testis antigen 32, CT32, DSS-AHC critical interval MAGE superfamily 6, DAM6, MAGE XP-2 antigen, MAGE-B2 antigen, MAGEB2

Target/Specificity

This MAGEB2 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 4-33 amino acids from the N-terminal region of human MAGEB2.

Dilution

WB~~1:1000

IHC-P~~1:50~100

E~~Use at an assay dependent concentration.

Format

Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation followed by dialysis against PBS.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

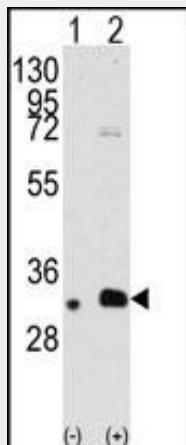
Precautions

MAGEB2 Antibody (N-term) is for research use only and not for use in diagnostic or therapeutic procedures.

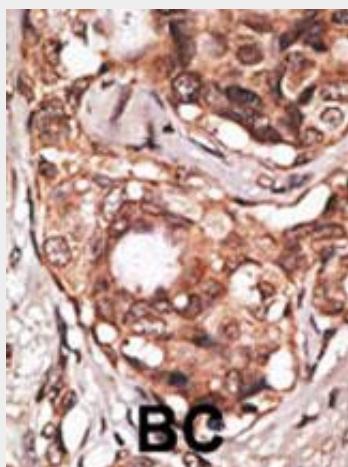
MAGEB2 Antibody (N-term) - Protein Information

Name MAGEB2

Function May enhance ubiquitin ligase activity of RING-type zinc finger-containing E3 ubiquitin-protein ligases. Proposed to act through recruitment and/or stabilization of the Ubl-conjugating enzyme (E2) at the E3:substrate complex.


Tissue Location

Expressed in testis and placenta, and in a significant fraction of tumors of various histologic types


MAGEB2 Antibody (N-term) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- [Western Blot](#)
- [Blocking Peptides](#)
- [Dot Blot](#)
- [Immunohistochemistry](#)
- [Immunofluorescence](#)
- [Immunoprecipitation](#)
- [Flow Cytometry](#)
- [Cell Culture](#)

MAGEB2 Antibody (N-term) - Images

Western blot analysis of MAGEB2 (arrow) using rabbit polyclonal MAGEB2 Antibody (Cat.#AP6172a). 293 cell lysates (2 ug/lane) either nontransfected (Lane 1) or transiently transfected with the MAGEB2 gene (Lane 2) (Origene Technologies).

Formalin-fixed and paraffin-embedded human cancer tissue reacted with the primary antibody, which was peroxidase-conjugated to the secondary antibody, followed by DAB staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated. BC = breast carcinoma; HC = hepatocarcinoma.

MAGEB2 Antibody (N-term) - Background

MAGEB2 is a member of the MAGEB gene family. The members of this family have their entire coding sequences located in the last exon, and the encoded proteins show 50 to 68% sequence identity to each other. The promoters and first exons of the MAGEB genes show considerable variability, suggesting that the existence of this gene family enables the same function to be expressed under different transcriptional controls. This gene is localized in the DSS (dosage-sensitive sex reversal) critical region. It is expressed in testis and placenta, and in a significant fraction of tumors of various histological types. The MAGEB genes are clustered on chromosome Xp22-p21.

MAGEB2 Antibody (N-term) - References

Park, J.H., et al., Mol. Cells 13(2):288-295 (2002).
Lurquin, C., et al., Genomics 46(3):397-408 (1997).
Dabovic, B., et al., Mamm. Genome 6(9):571-580 (1995).