

Histone H2A.Z (Acetyl Lys4) Polyclonal Antibody

Catalog # AP63460

Specification

Histone H2A.Z (Acetyl Lys4) Polyclonal Antibody - Product Information

Application
Primary Accession
Reactivity

Host Clonality <u>P0C0S5</u> Human, Mouse, Rat

Rabbit Polyclonal

WB

Histone H2A.Z (Acetyl Lys4) Polyclonal Antibody - Additional Information

Gene ID 3015

Other Names

H2AFZ; H2AZ; Histone H2A.Z; H2A/z

Dilution

WB~~WB: 1:1000-2000

Format

PBS, pH 7.4, containing 0.09% (W/V) sodium azide as Preservative and 50% Glycerol.

Storage Conditions

-20°C

Histone H2A.Z (Acetyl Lys4) Polyclonal Antibody - Protein Information

Name H2AZ1 (<u>HGNC:4741</u>)

Function

Variant histone H2A which replaces conventional H2A in a subset of nucleosomes. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post- translational modifications of histones, also called histone code, and nucleosome remodeling. May be involved in the formation of constitutive heterochromatin. May be required for chromosome segregation during cell division.

Cellular Location

Nucleus. Chromosome.

Histone H2A.Z (Acetyl Lys4) Polyclonal Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

• Western Blot

- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

Histone H2A.Z (Acetyl Lys4) Polyclonal Antibody - Images

Histone H2A.Z (Acetyl Lys4) Polyclonal Antibody - Background

Variant histone H2A which replaces conventional H2A in a subset of nucleosomes. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. May be involved in the formation of constitutive heterochromatin. May be required for chromosome segregation during cell division.