AMPKβ2 Polyclonal Antibody **Catalog # AP63586** ## **Specification** ## AMPKβ2 Polyclonal Antibody - Product Information Application WB Primary Accession 043741 Reactivity Human, Mouse, Rat Host Rabbit Clonality Polyclonal ## AMPKβ2 Polyclonal Antibody - Additional Information **Gene ID 5565** **Other Names** PRKAB2; 5'-AMP-activated protein kinase subunit beta-2; AMPK subunit beta-2 **Dilution** WB~~WB: 1:1000-2000 **Format** PBS, pH 7.4, containing 0.09% (W/V) sodium azide as Preservative and 50% Glycerol. **Storage Conditions** -20°C ## AMPKβ2 Polyclonal Antibody - Protein Information # Name PRKAB2 #### **Function** Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3). #### **AMPKβ2 Polyclonal Antibody - Protocols** Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - Immunohistochemistry - Immunofluorescence - Immunoprecipitation - Flow Cytomety - Cell Culture ## AMPKβ2 Polyclonal Antibody - Images ## AMPKβ2 Polyclonal Antibody - Background Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).