

AMPKβ2 Polyclonal Antibody

Catalog # AP63586

Specification

AMPKβ2 Polyclonal Antibody - Product Information

Application WB
Primary Accession 043741

Reactivity Human, Mouse, Rat

Host Rabbit Clonality Polyclonal

AMPKβ2 Polyclonal Antibody - Additional Information

Gene ID 5565

Other Names

PRKAB2; 5'-AMP-activated protein kinase subunit beta-2; AMPK subunit beta-2

Dilution

WB~~WB: 1:1000-2000

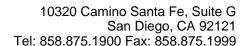
Format

PBS, pH 7.4, containing 0.09% (W/V) sodium azide as Preservative and 50% Glycerol.

Storage Conditions

-20°C

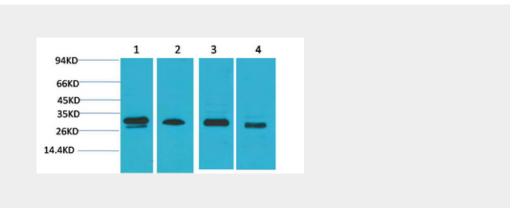
AMPKβ2 Polyclonal Antibody - Protein Information


Name PRKAB2

Function

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).

AMPKβ2 Polyclonal Antibody - Protocols


Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

AMPKβ2 Polyclonal Antibody - Images

AMPKβ2 Polyclonal Antibody - Background

Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).