

MEK-4 (phospho Thr261) Polyclonal Antibody

Catalog # AP67104

Specification

MEK-4 (phospho Thr261) Polyclonal Antibody - Product Information

Application Primary Accession Reactivity Host WB, IHC-P
P45985
Human, Mouse, Rat
Rabbit
Polyclonal

MEK-4 (phospho Thr261) Polyclonal Antibody - Additional Information

Gene ID 6416

Clonality

Other Names

MAP2K4; JNKK1; MEK4; MKK4; PRKMK4; SEK1; SERK1; SKK1; Dual specificity mitogen-activated protein kinase kinase 4; MAP kinase kinase 4; MAPKK 4; JNK-activating kinase 1; MAPK/ERK kinase 4; MEK 4; SAPK/ERK kinase 1; SEK1; Stress-activated pro

Dilution

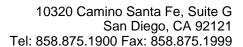
WB~~Western Blot: 1/500 - 1/2000. Immunohistochemistry: 1/100 - 1/300. ELISA: 1/10000. Not yet tested in other applications. IHC-P~ \sim N/A

Format

Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide.

Storage Conditions

-20°C


MEK-4 (phospho Thr261) Polyclonal Antibody - Protein Information

Name MAP2K4

Synonyms JNKK1, MEK4, MKK4, PRKMK4, SEK1, SERK1,

Function

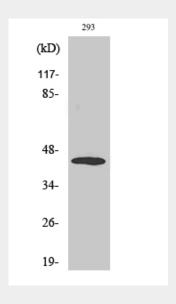
Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Essential component of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. With MAP2K7/MKK7, is the one of the only known kinase to directly activate the stress-activated protein kinase/c-Jun N-terminal kinases MAPK8/JNK1, MAPK9/JNK2 and MAPK10/JNK3. MAP2K4/MKK4 and MAP2K7/MKK7 both activate the JNKs by phosphorylation, but they differ in their preference for the phosphorylation site in the Thr-Pro-Tyr motif. MAP2K4 shows preference for phosphorylation of the Tyr residue and MAP2K7/MKK7 for the Thr residue. The phosphorylation of the Thr residue by MAP2K7/MKK7 seems to be the prerequisite for JNK activation at least in response to pro-inflammatory cytokines, while other stimuli activate both MAP2K4/MKK4 and MAP2K7/MKK7 which synergistically phosphorylate JNKs. MAP2K4 is

required for maintaining peripheral lymphoid homeostasis. The MKK/JNK signaling pathway is also involved in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. Whereas MAP2K7/MKK7 exclusively activates JNKs, MAP2K4/MKK4 additionally activates the p38 MAPKs MAPK11, MAPK12, MAPK13 and MAPK14.

Cellular Location

Cytoplasm. Nucleus.

Tissue Location


Abundant expression is seen in the skeletal muscle. It is also widely expressed in other tissues

MEK-4 (phospho Thr261) Polyclonal Antibody - Protocols


Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

MEK-4 (phospho Thr261) Polyclonal Antibody - Images

MEK-4 (phospho Thr261) Polyclonal Antibody - Background

Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Essential component of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. With MAP2K7/MKK7, is the one of the only known kinase to directly activate the stress-activated protein kinase/c-Jun N-terminal kinases MAPK8/JNK1, MAPK9/JNK2 and MAPK10/JNK3. MAP2K4/MKK4 and MAP2K7/MKK7 both activate the JNKs by phosphorylation, but they differ in their preference for the phosphorylation site in the Thr-Pro-Tyr motif. MAP2K4 shows preference for phosphorylation of the Tyr residue and MAP2K7/MKK7 for the Thr residue. The phosphorylation of the Thr residue by MAP2K7/MKK7 seems to be the prerequisite for JNK activation at least in response to proinflammatory cytokines, while other stimuli activate both MAP2K4/MKK4 and MAP2K7/MKK7 which synergistically phosphorylate JNKs. MAP2K4 is required for maintaining peripheral lymphoid homeostasis. The MKK/JNK signaling pathway is also involved in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. Whereas MAP2K7/MKK7 exclusively activates JNKs, MAP2K4/MKK4 additionally activates the p38 MAPKS MAPK11, MAPK12, MAPK13 and MAPK14.