

PKA IIβ reg (phospho Ser113) Polyclonal Antibody

Catalog # AP67292

Specification

PKA IIß reg (phospho Ser113) Polyclonal Antibody - Product Information

Application WB, IHC-P Primary Accession P31323

Reactivity Human, Mouse, Rat, Monkey

Host Rabbit Clonality Polyclonal

PKA IIβ reg (phospho Ser113) Polyclonal Antibody - Additional Information

Gene ID 5577

Other Names

PRKAR2B; cAMP-dependent protein kinase type II-beta regulatory subunit

Dilution

WB~~Western Blot: 1/500 - 1/2000. Immunohistochemistry: 1/100 - 1/300. ELISA: 1/10000. Not yet tested in other applications. IHC-P~ \sim N/A

Format

Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide.

Storage Conditions

-20°C

PKA IIß reg (phospho Ser113) Polyclonal Antibody - Protein Information

Name PRKAR2B

Function

Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. Type II regulatory chains mediate membrane association by binding to anchoring proteins, including the MAP2 kinase.

Cellular Location

Cytoplasm. Cell membrane. Note=Colocalizes with PJA2 in the cytoplasm and at the cell membrane

Tissue Location

Four types of regulatory chains are found: I-alpha, I-beta, II-alpha, and II-beta. Their expression varies among tissues and is in some cases constitutive and in others inducible

PKA IIβ reg (phospho Ser113) Polyclonal Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- <u>Immunofluorescence</u>
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

PKA IIB reg (phospho Ser113) Polyclonal Antibody - Images

PKA IIβ reg (phospho Ser113) Polyclonal Antibody - Background

Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. Type II regulatory chains mediate membrane association by binding to anchoring proteins, including the MAP2 kinase.