

Bcl-6 (phospho Ser333) Polyclonal Antibody
Catalog # AP67392**Specification****Bcl-6 (phospho Ser333) Polyclonal Antibody - Product Information**

Application	WB
Primary Accession	P41182
Reactivity	Human, Mouse, Rat
Host	Rabbit
Clonality	Polyclonal

Bcl-6 (phospho Ser333) Polyclonal Antibody - Additional Information**Gene ID 604****Other Names**

BCL6; BCL5; LAZ3; ZBTB27; ZNF51; B-cell lymphoma 6 protein; BCL-6; B-cell lymphoma 5 protein; BCL-5; Protein LAZ-3; Zinc finger and BTB domain-containing protein 27; Zinc finger protein 51

Dilution

WB~~Western Blot: 1/500 - 1/2000. ELISA: 1/5000. Not yet tested in other applications.

Format

Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide.

Storage Conditions

-20°C

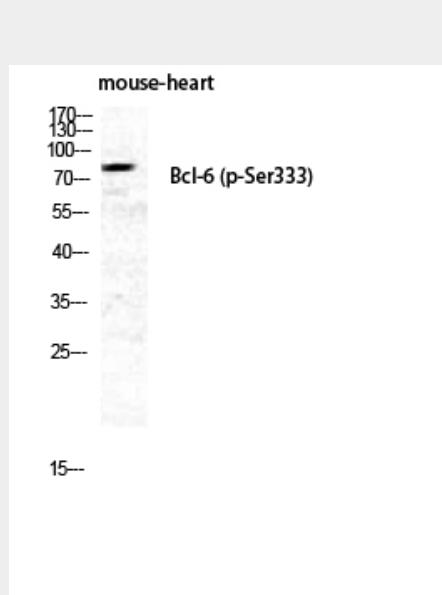
Bcl-6 (phospho Ser333) Polyclonal Antibody - Protein Information**Name** BCL6**Synonyms** BCL5, LAZ3, ZBTB27, ZNF51**Function**

Transcriptional repressor mainly required for germinal center (GC) formation and antibody affinity maturation which has different mechanisms of action specific to the lineage and biological functions. Forms complexes with different corepressors and histone deacetylases to repress the transcriptional expression of different subsets of target genes. Represses its target genes by binding directly to the DNA sequence 5'-TTCCTAGAA-3' (BCL6-binding site) or indirectly by repressing the transcriptional activity of transcription factors. In GC B-cells, represses genes that function in differentiation, inflammation, apoptosis and cell cycle control, also autoregulates its transcriptional expression and up-regulates, indirectly, the expression of some genes important for GC reactions, such as AICDA, through the repression of microRNAs expression, like miR155. An important function is to allow GC B-cells to proliferate very rapidly in response to T- cell dependent antigens and tolerate the physiological DNA breaks required for immunoglobulin class switch recombination and somatic hypermutation without inducing a p53/TP53-dependent apoptotic response. In follicular helper CD4(+) T-cells (T(FH) cells), promotes the expression of T(FH)-related

genes but inhibits the differentiation of T(H)1, T(H)2 and T(H)17 cells. Also required for the establishment and maintenance of immunological memory for both T- and B-cells. Suppresses macrophage proliferation through competition with STAT5 for STAT- binding motifs binding on certain target genes, such as CCL2 and CCND2. In response to genotoxic stress, controls cell cycle arrest in GC B- cells in both p53/TP53-dependendedent and -independent manners. Besides, also controls neurogenesis through the alteration of the composition of NOTCH-dependent transcriptional complexes at selective NOTCH targets, such as HES5, including the recruitment of the deacetylase SIRT1 and resulting in an epigenetic silencing leading to neuronal differentiation.

Cellular Location

Nucleus


Tissue Location

Expressed in germinal center T- and B-cells and in primary immature dendritic cells.

Bcl-6 (phospho Ser333) Polyclonal Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- [Western Blot](#)
- [Blocking Peptides](#)
- [Dot Blot](#)
- [Immunohistochemistry](#)
- [Immunofluorescence](#)
- [Immunoprecipitation](#)
- [Flow Cytometry](#)
- [Cell Culture](#)

Bcl-6 (phospho Ser333) Polyclonal Antibody - Images

Western Blot analysis of MOUSE-HEART cells using Phospho-Bcl-6 (S333) Polyclonal Antibody diluted at 1:1000 cells nucleus extracted by Minute TM Cytoplasmic and Nuclear Fractionation kit (SC-003,Inventbiotech,MN,USA).

Western blot analysis of mouse-heart lysis using Phospho-Bcl-6 (S333) antibody. Antibody was diluted at 1:1000 cells nucleus extracted by Minute TM Cytoplasmic and Nuclear Fractionation kit (SC-003, Inventbiotech, MN, USA).

Bcl-6 (phospho Ser333) Polyclonal Antibody - Background

Transcriptional repressor mainly required for germinal center (GC) formation and antibody affinity maturation which has different mechanisms of action specific to the lineage and biological functions. Forms complexes with different corepressors and histone deacetylases to repress the transcriptional expression of different subsets of target genes. Represses its target genes by binding directly to the DNA sequence 5'-TTCCTAGAA-3' (BCL6- binding site) or indirectly by repressing the transcriptional activity of transcription factors. In GC B-cells, represses genes that function in differentiation, inflammation, apoptosis and cell cycle control, also autoregulates its transcriptional expression and up-regulates, indirectly, the expression of some genes important for GC reactions, such as AICDA, through the repression of microRNAs expression, like miR155. An important function is to allow GC B-cells to proliferate very rapidly in response to T-cell dependent antigens and tolerate the physiological DNA breaks required for immunoglobulin class switch recombination and somatic hypermutation without inducing a p53/TP53-dependent apoptotic response. In follicular helper CD4(+) T-cells (T(FH) cells), promotes the expression of T(FH)-related genes but inhibits the differentiation of T(H)1, T(H)2 and T(H)17 cells. Also required for the establishment and maintenance of immunological memory for both T- and B-cells. Suppresses macrophage proliferation through competition with STAT5 for STAT-binding motifs binding on certain target genes, such as CCL2 and CCND2. In response to genotoxic stress, controls cell cycle arrest in GC B-cells in both p53/TP53- dependedent and -independent manners. Besides, also controls neurogenesis through the alteration of the composition of NOTCH- dependent transcriptional complexes at selective NOTCH targets, such as HES5, including the recruitment of the deacetylase SIRT1 and resulting in an epigenetic silencing leading to neuronal differentiation.