

AKR1A1 Polyclonal Antibody

Catalog # AP68352

Specification

AKR1A1 Polyclonal Antibody - Product Information

Application WB
Primary Accession P14550

Reactivity Human, Mouse, Rat

Host Rabbit Clonality Polyclonal

AKR1A1 Polyclonal Antibody - Additional Information

Gene ID 10327

Other Names

AKR1A1; ALDR1; ALR; Alcohol dehydrogenase [NADP(+)]; Aldehyde reductase; Aldo-keto reductase family 1 member A1

Dilution

WB~~Western Blot: 1/500 - 1/2000. ELISA: 1/40000. Not yet tested in other applications.

Format

Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide.

Storage Conditions

-20°C

AKR1A1 Polyclonal Antibody - Protein Information

Name AKR1A1

Synonyms ALDR1, ALR

Function

Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols (PubMed:10510318, PubMed:30538128). Displays enzymatic activity towards endogenous metabolites such as aromatic and aliphatic aldehydes, ketones, monosaccharides and bile acids, with a preference for negatively charged substrates, such as glucuronate and succinic semialdehyde (PubMed:10510318, PubMed:30538128, PubMed:30

and drugs, including the anthracyclines doxorubicin (DOX) and daunorubicin (DAUN) (PubMed:11306097, PubMed:18276838). Also acts as an inhibitor of protein S-nitrosylation by mediating degradation of S-nitroso-coenzyme A (S-nitroso-CoA), a cofactor required to S- nitrosylate proteins (PubMed:30538128). S-nitroso-CoA reductase activity is involved in reprogramming intermediary metabolism in renal proximal tubules, notably by inhibiting protein S-nitrosylation of isoform 2 of PKM (PKM2) (By similarity). Also acts as a S-nitroso- glutathione reductase by catalyzing the NADPH-dependent reduction of S- nitrosoglutathione (PubMed:31649033). Displays no reductase activity towards retinoids (By similarity).

Cellular Location

Cytoplasm, cytosol {ECO:0000250|UniProtKB:Q9JII6}. Apical cell membrane {ECO:0000250|UniProtKB:Q9JII6}

Tissue Location

Widely expressed. Highly expressed in kidney, salivary gland and liver. Detected in trachea, stomach, brain, lung, prostate, placenta, mammary gland, small intestine and lung

AKR1A1 Polyclonal Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

AKR1A1 Polyclonal Antibody - Images

AKR1A1 Polyclonal Antibody - Background

Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols. Displays enzymatic activity towards endogenous metabolites such as aromatic and aliphatic aldehydes, ketones, monosacharides and bile acids, with a preference for negatively charged substrates, such as glucuronate and succinic semialdehyde (PubMed:10510318). Functions as a detoxifiying enzyme by reducing a range of toxic aldehydes. Reduces methylglyoxal and 3- deoxyglucosone, which are present at elevated levels under hyperglycemic conditions and are cytotoxic. Involved also in the detoxification of lipid-derived aldehydes like acrolein (By similarity). Plays a role in the activation of procarcinogens, such as polycyclic aromatic hydrocarbon trans-dihydrodiols, and in the metabolism of various xenobiotics and drugs, including the anthracyclines doxorubicin (DOX) and daunorubicin (DAUN) (PubMed:18276838, PubMed:11306097). Displays no reductase activity towards retinoids (By similarity).