CYP1B1 Polyclonal Antibody **Catalog # AP69376** #### **Specification** # **CYP1B1 Polyclonal Antibody - Product Information** Application WB Primary Accession Q16678 Reactivity Human Host Rabbit Clonality Polyclonal ## CYP1B1 Polyclonal Antibody - Additional Information **Gene ID 1545** **Other Names** CYP1B1; Cytochrome P450 1B1; CYPIB1 Dilution WB~~Western Blot: 1/500 - 1/2000. ELISA: 1/40000. Not yet tested in other applications. **Format** Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide. **Storage Conditions** -20°C ## **CYP1B1** Polyclonal Antibody - Protein Information Name CYP1B1 {ECO:0000303|PubMed:8910454, ECO:0000312|HGNC:HGNC:2597} #### **Function** A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:20972997, PubMed:11555828, PubMed:12865317, PubMed:10681376, PubMed:15258110). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:20972997, PubMed:11555828, PubMed:12865317, PubMed:10681376, target=" catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2- and 4-hydroxy E1 and E2. Displays a predominant hydroxylase activity toward E2 at the C-4 position (PubMed: 11555828, PubMed:12865317). Metabolizes testosterone and progesterone to B or D ring hydroxylated metabolites (PubMed:10426814). May act as a major enzyme for all-trans retinoic acid biosynthesis in extrahepatic tissues. Catalyzes two successive oxidative transformation of all-trans retinol to all-trans retinal and then to the active form all-trans retinoic acid (PubMed: 10681376, PubMed:15258110). Catalyzes the epoxidation of double bonds of certain PUFA. Converts arachidonic acid toward epoxyeicosatrienoic acid (EpETrE) regioisomers, 8,9-, 11,12-, and 14,15- EpETrE, that function as lipid mediators in the vascular system (PubMed: 20972997). Additionally, displays dehydratase activity toward oxygenated eicosanoids hydroperoxyeicosatetraenoates (HpETEs). This activity is independent of cytochrome P450 reductase, NADPH, and O2 (PubMed: 21068195). Also involved in the oxidative metabolism of xenobiotics, particularly converting polycyclic aromatic hydrocarbons and heterocyclic aryl amines procarcinogens to DNA-damaging products (PubMed:10426814). Plays an important role in retinal vascular development. Under hyperoxic O2 conditions, promotes retinal angiogenesis and capillary morphogenesis, likely by metabolizing the oxygenated products ultrastructural organization and function of trabecular meshwork tissue through modulation of #### **Cellular Location** POSTN expression (By similarity). Endoplasmic reticulum membrane {ECO:0000250|UniProtKB:Q64429}; Peripheral membrane protein {ECO:0000250|UniProtKB:Q64429}. Microsome membrane {ECO:0000250|UniProtKB:Q64429}; Peripheral membrane protein {ECO:0000250|UniProtKB:Q64429}. Mitochondrion {ECO:0000250|UniProtKB:Q64429}. Note=Located primarily in endoplasmic reticulum. Upon treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), CYP1B1 is also targeted to mitochondria {ECO:0000250|UniProtKB:Q64429} generated during the oxidative stress. Also, contributes to oxidative homeostasis and ## **Tissue Location** Expressed in heart, brain, lung, skeletal muscle, kidney, spleen, thymus, prostate, testis, ovary, small intestine, colon, and peripheral blood leukocytes (PubMed:8175734). Expressed in retinal endothelial cells and umbilical vein endothelial cells (at protein level) (PubMed:19005183). #### CYP1B1 Polyclonal Antibody - Protocols Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - <u>Immunohistochemistry</u> - Immunofluorescence - Immunoprecipitation - Flow Cytomety - Cell Culture # CYP1B1 Polyclonal Antibody - Images CYP1B1 Polyclonal Antibody - Background Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, retinoid and xenobiotics. Preferentially oxidizes 17beta- estradiol to the carcinogenic 4-hydroxy derivative, and a variety of procarcinogenic compounds to their activated forms, including polycyclic aromatic hydrocarbons. Promotes angiogenesis by removing cellular oxygenation products, thereby decreasing oxidative stress, release of antiangiogenic factor THBS2, then allowing endothelial cells migration, cell adhesion and capillary morphogenesis. These changes are concommitant with the endothelial nitric oxide synthase activity and nitric oxide synthesis. Plays an important role in the regulation of perivascular cell proliferation, migration, and survival through modulation of the intracellular oxidative state and NF-kappa-B expression and/or activity, during angiogenesis. Contributes to oxidative homeostasis and ultrastructural organization and function of trabecular meshwork tissue through modulation of POSTN expression.