

Dok-1 Polyclonal Antibody

Catalog # AP69576

Specification

Dok-1 Polyclonal Antibody - Product Information

Application WB, IHC-P, IF Primary Accession Q99704

Reactivity Human, Mouse, Rat

Host Rabbit Clonality Polyclonal

Dok-1 Polyclonal Antibody - Additional Information

Gene ID 1796

Other Names

DOK1; Docking protein 1; Downstream of tyrosine kinase 1; p62(dok); pp62

Dilution

WB~~Western Blot: 1/500 - 1/2000. Immunohistochemistry: 1/100 - 1/300. Immunofluorescence: 1/200 - 1/1000. ELISA: 1/5000. Not yet tested in other applications.

IHC-P~~N/A IF~~1:50~200

Format

Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide.

Storage Conditions

-20°C

Dok-1 Polyclonal Antibody - Protein Information

Name DOK1

Function

DOK proteins are enzymatically inert adaptor or scaffolding proteins. They provide a docking platform for the assembly of multimolecular signaling complexes. DOK1 appears to be a negative regulator of the insulin signaling pathway. Modulates integrin activation by competing with talin for the same binding site on ITGB3.

Cellular Location

[Isoform 1]: Cytoplasm. Nucleus.

Tissue Location

Expressed in pancreas, heart, leukocyte and spleen. Expressed in both resting and activated peripheral blood T-cells Expressed in breast cancer.

Dok-1 Polyclonal Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- <u>Immunofluorescence</u>
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

Dok-1 Polyclonal Antibody - Images

Dok-1 Polyclonal Antibody - Background

DOK proteins are enzymatically inert adaptor or scaffolding proteins. They provide a docking platform for the assembly of multimolecular signaling complexes. DOK1 appears to be a negative regulator of the insulin signaling pathway. Modulates integrin activation by competing with talin for the same binding site on ITGB3.