

Dok-5 Polyclonal Antibody

Catalog # AP69582

Specification

Dok-5 Polyclonal Antibody - Product Information

Application Primary Accession Reactivity Host Clonality WB <u>O9P104</u> Human, Mouse Rabbit Polyclonal

Dok-5 Polyclonal Antibody - Additional Information

Gene ID 55816

Other Names DOK5; C20orf180; Docking protein 5; Downstream of tyrosine kinase 5; Insulin receptor substrate 6; IRS-6; IRS6

Dilution WB~~Western Blot: 1/500 - 1/2000. ELISA: 1/20000. Not yet tested in other applications.

Format Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide.

Storage Conditions -20°C

Dok-5 Polyclonal Antibody - Protein Information

Name DOK5

Synonyms C20orf180

Function

DOK proteins are enzymatically inert adaptor or scaffolding proteins. They provide a docking platform for the assembly of multimolecular signaling complexes. DOK5 functions in RET-mediated neurite outgrowth and plays a positive role in activation of the MAP kinase pathway. Putative link with downstream effectors of RET in neuronal differentiation.

Tissue Location

Highest expression in skeletal muscle, lower in brain, heart and kidney. Also detected in activated peripheral blood T- lymphocytes.

Dok-5 Polyclonal Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

Dok-5 Polyclonal Antibody - Images

Dok-5 Polyclonal Antibody - Background

DOK proteins are enzymatically inert adaptor or scaffolding proteins. They provide a docking platform for the assembly of multimolecular signaling complexes. DOK5 functions in RET-mediated neurite outgrowth and plays a positive role in activation of the MAP kinase pathway. Putative link

with downstream effectors of RET in neuronal differentiation.