

E2F-2 Polyclonal Antibody

Catalog # AP69626

Specification

E2F-2 Polyclonal Antibody - Product Information

Application WB, IHC-P
Primary Accession Q14209
Reactivity Human, Mouse

Host Rabbit Clonality Polyclonal

E2F-2 Polyclonal Antibody - Additional Information

Gene ID 1870

Other Names

E2F2; Transcription factor E2F2; E2F-2

Dilution

WB~~Western Blot: 1/500 - 1/2000. Immunohistochemistry: 1/100 - 1/300. ELISA: 1/40000. Not yet tested in other applications. IHC-P~ \sim N/A

Format

Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide.

Storage Conditions

-20°C

E2F-2 Polyclonal Antibody - Protein Information

Name E2F2

Function

Transcription activator that binds DNA cooperatively with DP proteins through the E2 recognition site, 5'-TTTC[CG]CGC-3' found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication. The DRTF1/E2F complex functions in the control of cell-cycle progression from g1 to s phase. E2F2 binds specifically to RB1 in a cell-cycle dependent manner.

Cellular Location

Nucleus.

Tissue Location

Highest level of expression is found in placenta, low levels are found in lung. Found as well in many immortalized cell lines derived from tumor samples

E2F-2 Polyclonal Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- <u>Immunofluorescence</u>
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

E2F-2 Polyclonal Antibody - Images

E2F-2 Polyclonal Antibody - Background

Transcription activator that binds DNA cooperatively with DP proteins through the E2 recognition site, 5'-TTTC[CG]CGC- 3' found in the promoter region of a number of genes whose products are involved in cell cycle regulation or in DNA replication. The DRTF1/E2F complex functions in the control of cell-cycle progression from g1 to s phase. E2F2 binds specifically to RB1 in a cell-cycle dependent manner.