

Id4 Polyclonal Antibody

Catalog # AP70455

Specification

Id4 Polyclonal Antibody - Product Information

Application
Primary Accession
Reactivity
Host

Clonality

WB, IHC-P
P47928
Human, Mouse, Rat
Rabbit
Polyclonal

Id4 Polyclonal Antibody - Additional Information

Gene ID 3400

Other Names

ID4; BHLHB27; DNA-binding protein inhibitor ID-4; Class B basic helix-loop-helix protein 27; bHLHb27; Inhibitor of DNA binding 4

Dilution

WB~~Western Blot: 1/500 - 1/2000. Immunohistochemistry: 1/100 - 1/300. ELISA: 1/20000. Not yet tested in other applications. IHC-P~ \sim N/A

Format

Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide.

Storage Conditions

-20°C

Id4 Polyclonal Antibody - Protein Information

Name ID4

Synonyms BHLHB27

Function

Transcriptional regulator (lacking a basic DNA binding domain) which negatively regulates the basic helix-loop-helix (bHLH) transcription factors by forming heterodimers and inhibiting their DNA binding and transcriptional activity. Implicated in regulating a variety of cellular processes, including cellular growth, senescence, differentiation, apoptosis, angiogenesis, and neoplastic transformation (By similarity).

Cellular Location

Nucleus.

Id4 Polyclonal Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- <u>Immunofluorescence</u>
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

Id4 Polyclonal Antibody - Images

Id4 Polyclonal Antibody - Background

Transcriptional regulator (lacking a basic DNA binding domain) which negatively regulates the basic helix-loop-helix (bHLH) transcription factors by forming heterodimers and inhibiting their DNA binding and transcriptional activity. Implicated in regulating a variety of cellular processes, including cellular growth, senescence, differentiation, apoptosis, angiogenesis, and neoplastic transformation (By similarity).