

IFI-56K Polyclonal Antibody

Catalog # AP70458

Specification

IFI-56K Polyclonal Antibody - Product Information

Application	WB, IHC-P
Primary Accession	<u>P09914</u>
Reactivity	Human
Host	Rabbit
Clonality	Polyclonal

IFI-56K Polyclonal Antibody - Additional Information

Gene ID 3434

Other Names IFIT1; G10P1; IFI56; IFNAI1; ISG56; Interferon-induced protein with tetratricopeptide repeats 1; IFIT-1; Interferon-induced 56 kDa protein; IFI-56K; P56

Dilution

WB~~Western Blot: 1/500 - 1/2000. Immunohistochemistry: 1/100 - 1/300. ELISA: 1/40000. Not yet tested in other applications. IHC-P~~N/A

Format Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide.

Storage Conditions -20°C

IFI-56K Polyclonal Antibody - Protein Information

Name IFIT1 (HGNC:5407)

Function

Plays a key role in the innate immune response as part of an interferon-dependent multiprotein complex, recognizing and sequestering viral RNAs that lack host-specific 2'-O-methylation at their 5' cap. By distinguishing these RNAs from host mRNAs, inhibits their translation by competing with the translation initiation factor eIF4E (PubMed:21642987, PubMed:27240734, PubMed:39009378, PubMed:23334420, PubMed:28251928, PubMed:36285486, PubMed:36285486). Could also prevent viral replication through its interaction with DNA replication origin-binding protein E1 of several viruses. Causes the translocation of E1 from the nucleus to the cytoplasm and can also inhibit its helicase activity in vitro (PubMed:<a href="http://www.uniprot.org/citations/19008854"

target="_blank">19008854, PubMed:21976647). Exhibits antiviral activity against many viruses from the Flaviviridae (West Nile virus, Dengue virus, hepatitis C virus), Coronaviridae (human 229E coronavirus, SARS-CoV-2 and SARS-CoV), Poxviridae (vaccinia virus) and Togaviridae (Sindbis virus) families (PubMed:19008854, PubMed:21976647, PubMed:21976647, PubMed:28251928, PubMed:36285486).

Cellular Location Cytoplasm

IFI-56K Polyclonal Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>
- IFI-56K Polyclonal Antibody Images

IFI-56K Polyclonal Antibody - Background

Interferon-induced antiviral RNA-binding protein that specifically binds single-stranded RNA bearing a 5'-triphosphate group (PPP-RNA), thereby acting as a sensor of viral single- stranded RNAs and inhibiting expression of viral messenger RNAs. Single-stranded PPP-RNAs, which lack

2'-O-methylation of the 5' cap and bear a 5'-triphosphate group instead, are specific from viruses, providing a molecular signature to distinguish between self and non-self mRNAs by the host during viral infection. Directly binds PPP-RNA in a non-sequence-specific manner. Viruses evolved several ways to evade this restriction system such as encoding their own 2'-O-methylase for their mRNAs or by stealing host cap containing the 2'-O-methylation (cap snatching mechanism). Exhibits antiviral activity against several viruses including human papilloma and hepatitis C viruses.