KIR3.1 Polyclonal Antibody **Catalog # AP70658** #### **Specification** ### KIR3.1 Polyclonal Antibody - Product Information Application WB Primary Accession P48549 Reactivity Human, Mouse, Rat Host Rabbit Clonality Polyclonal # KIR3.1 Polyclonal Antibody - Additional Information **Gene ID 3760** ### **Other Names** KCNJ3; GIRK1; G protein-activated inward rectifier potassium channel 1; GIRK-1; Inward rectifier K(+) channel Kir3.1; Potassium channel; inwardly rectifying subfamily J member 3 #### Dilution WB~~Western Blot: 1/500 - 1/2000. Immunofluorescence: 1/200 - 1/1000. ELISA: 1/20000. Not yet tested in other applications. #### **Format** Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide. #### **Storage Conditions** -20°C #### KIR3.1 Polyclonal Antibody - Protein Information Name KCNJ3 Synonyms GIRK1 ### **Function** This potassium channel is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. This receptor plays a crucial role in regulating the heartbeat. #### **Cellular Location** Membrane; Multi-pass membrane protein. # **KIR3.1 Polyclonal Antibody - Protocols** Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - <u>Immunohistochemistry</u> - <u>Immunofluorescence</u> - <u>Immunoprecipitation</u> - Flow Cytomety - Cell Culture # KIR3.1 Polyclonal Antibody - Images KIR3.1 Polyclonal Antibody - Background This potassium channel is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. This receptor plays a crucial role in regulating the heartbeat.