

PKA IIα reg Polyclonal Antibody

Catalog # AP71927

Specification

PKA IIα reg Polyclonal Antibody - Product Information

Application WB, IHC-P, IF
Primary Accession
Reactivity Human
Host Rabbit
Clonality Polyclonal

PKA IIα reg Polyclonal Antibody - Additional Information

Gene ID 5576

Other Names

PRKAR2a; PKR2; PRKAR2; cAMP-dependent protein kinase type II-alpha regulatory subunit

Dilution

WB~~Western Blot: 1/500 - 1/2000. Immunohistochemistry: 1/100 - 1/300. Immunofluorescence: 1/200 - 1/1000. ELISA: 1/10000. Not yet tested in other applications. IHC-P~~N/A IF~~1:50~200

Format

Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.09% (W/V) sodium azide.

Storage Conditions

-20°C

PKA IIα reg Polyclonal Antibody - Protein Information

Name PRKAR2A

Synonyms PKR2, PRKAR2

Function

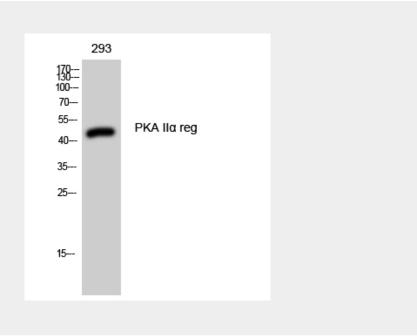
Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. Type II regulatory chains mediate membrane association by binding to anchoring proteins, including the MAP2 kinase.

Cellular Location

Cytoplasm. Cell membrane. Note=Colocalizes with PJA2 in the cytoplasm and the cell membrane

Tissue Location

Four types of regulatory chains are found: I-alpha, I-beta, II-alpha, and II-beta. Their expression varies among tissues and is in some cases constitutive and in others inducible



PKA IIα reg Polyclonal Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

PKA IIα reg Polyclonal Antibody - Images

PKA IIα reg Polyclonal Antibody - Background

Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. Type II regulatory chains mediate membrane association by binding to anchoring proteins, including the MAP2 kinase.