MAPK1 Antibody (Center) Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP7250c # **Specification** ### MAPK1 Antibody (Center) - Product Information Application FC, IHC-P, WB,E Primary Accession P28482 Other Accession <u>P26696</u>, <u>P63086</u>, <u>P63085</u>, <u>P46196</u> Reactivity Human Predicted Bovine, Mouse, Rat, Xenopus Host Rabbit Clonality Polyclonal Isotype Rabbit IgG Antigen Region 154-183 ### MAPK1 Antibody (Center) - Additional Information #### **Gene ID 5594** ### **Other Names** Mitogen-activated protein kinase 1, MAP kinase 1, MAPK 1, ERT1, Extracellular signal-regulated kinase 2, ERK-2, MAP kinase isoform p42, p42-MAPK, Mitogen-activated protein kinase 2, MAP kinase 2, MAPK 2, MAPK1, ERK2, PRKM1, PRKM2 # Target/Specificity This MAPK1 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 154-183 amino acids from the Central region of human MAPK1. #### **Dilution** FC~~1:10~50 IHC-P~~1:50~100 WB~~1:1000 E~~Use at an assay dependent concentration. ### **Format** Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation followed by dialysis against PBS. ### **Storage** Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. #### **Precautions** MAPK1 Antibody (Center) is for research use only and not for use in diagnostic or therapeutic procedures. # MAPK1 Antibody (Center) - Protein Information Name MAPK1 (HGNC:6871) Synonyms ERK2, PRKM1, PRKM2 Function Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade also plays a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1 and FXR1) and a variety of other signaling-related molecules (like ARHGEF2, DCC, FRS2 or GRB10). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade. Mediates phosphorylation of TPR in response to EGF stimulation. May play a role in the spindle assembly checkpoint. Phosphorylates PML and promotes its interaction with PIN1, leading to PML degradation. Phosphorylates CDK2AP2 (By similarity). Phosphorylates phosphoglycerate kinase PGK1 under hypoxic conditions to promote its targeting to the mitochondrion and suppress the formation of acetyl-coenzyme A from pyruvate (PubMed: 26942675). #### **Cellular Location** Cytoplasm, cytoskeleton, spindle. Nucleus. Cytoplasm, cytoskeleton, microtubule organizing center, centrosome. Cytoplasm. Membrane, caveola {ECO:0000250|UniProtKB:P63086}. Cell junction, focal adhesion {ECO:0000250|UniProtKB:P63085}. Note=Associated with the spindle during prometaphase and metaphase (By similarity). PEA15-binding and phosphorylated DAPK1 promote its cytoplasmic retention. Phosphorylation at Ser- 246 and Ser-248 as well as autophosphorylation at Thr-190 promote nuclear localization. # MAPK1 Antibody (Center) - Protocols Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - <u>Immunohistochemistry</u> - Immunofluorescence - Immunoprecipitation - Flow Cytomety - Cell Culture ### MAPK1 Antibody (Center) - Images Western blot analysis of anti-MAPK1 Antibody (Center) Pab (RB11609) in Hela, 293, and HepG2 cell line lysates. MAPK1 Antibody (Center)(arrow) was detected using the purified Pab. Formalin-fixed and paraffin-embedded human lung carcinoma tissue reacted with MAPK1 Antibody (Center)(Cat.#AP7250c), which was peroxidase-conjugated to the secondary antibody, followed by DAB staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated. MAPK1 Antibody (Center) (Cat. #AP7250c) flow cytometric analysis of HepG2 cells (right histogram) compared to a negative control cell (left histogram).FITC-conjugated goat-anti-rabbit secondary antibodies were used for the analysis. # MAPK1 Antibody (Center) - Background The protein encoded by this gene is a member of the MAP kinase family. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. The activation of this kinase requires its phosphorylation by upstream kinases. Upon activation, this kinase translocates to the nucleus of the stimulated cells, where it phosphorylates nuclear targets. # MAPK1 Antibody (Center) - References Munshi, H.G., et al., J. Biol. Chem. 279(37):39042-39050 (2004). Mukherjee, S., et al., Infect. Immun. 72(9):5274-5282 (2004). Lou, Y., et al., Biochem. Biophys. Res. Commun. 321(2):495-501 (2004). Mitsushima, M., et al., J. Biol. Chem. 279(33):34570-34577 (2004). Huang, H.M., et al., Biochem. Biophys. Res. Commun. 320(4):1247-1252 (2004).