RSK2 (RPS6KA3) Antibody (S369) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP7286b ### **Specification** ### RSK2 (RPS6KA3) Antibody (S369) - Product Information Application IHC-P,E Primary Accession P51812 Other Accession <u>Q6PFQ0</u>, <u>P18654</u> Reactivity Human Predicted Mouse, Zebrafish Host Rabbit Clonality Polyclonal Isotype Rabbit IgG ### RSK2 (RPS6KA3) Antibody (S369) - Additional Information #### **Gene ID 6197** #### **Other Names** Ribosomal protein S6 kinase alpha-3, S6K-alpha-3, 90 kDa ribosomal protein S6 kinase 3, p90-RSK 3, p90RSK3, Insulin-stimulated protein kinase 1, ISPK-1, MAP kinase-activated protein kinase 1b, MAPK-activated protein kinase 1b, MAPKAP kinase 1b, MAPKAPK-1b, Ribosomal S6 kinase 2, RSK-2, pp90RSK2, RPS6KA3, ISPK1, MAPKAPK1B, RSK2 # Target/Specificity This RSK2 (RPS6KA3) antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide corresponding to amino acid residues surrounding S369 of human RPS6KA3. #### **Dilution** IHC-P~~1:10~50 #### **Format** Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. #### Storage Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. #### **Precautions** RSK2 (RPS6KA3) Antibody (S369) is for research use only and not for use in diagnostic or therapeutic procedures. # RSK2 (RPS6KA3) Antibody (S369) - Protein Information #### Name RPS6KA3 ## Synonyms ISPK1, MAPKAPK1B, RSK2 Function Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro- apoptotic function of BAD and DAPK1 (PubMed: 9770464, PubMed: 16223362, PubMed: 17360704, PubMed: 16213824). In fibroblast, is required for EGFstimulated phosphorylation of CREB1 and histone H3 at 'Ser-10', which results in the subsequent transcriptional activation of several immediate-early genes (PubMed: 9770464, PubMed: 10436156). In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP (PubMed: 16223362). Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity (PubMed: 8250835). Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the preinitiation complex (PubMed: 17360704). In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation (PubMed: 18508509, PubMed: 18813292). Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin- sensitive signaling independently of the PI3K/AKT pathway (PubMed: 18722121). Mediates cell survival by phosphorylating the pro- apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function (PubMed: 16213824). Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCI4) (PubMed: 18508509, PubMed: 18813292). Is involved in cell cycle regulation by phosphorylating the CDK inhibitor CDKN1B, which promotes CDKN1B association with 14-3-3 proteins and prevents its translocation to the nucleus and inhibition of G1 progression (By similarity). In LPS-stimulated dendritic cells, is involved in TLR4- induced macropinocytosis, and in myeloma cells, acts as effector of FGFR3-mediated transformation signaling, after direct phosphorylation at Tyr-529 by FGFR3 (By similarity). Negatively regulates EGF-induced MAPK1/3 phosphorylation via phosphorylation of SOS1 (By similarity). Phosphorylates SOS1 at 'Ser-1134' and 'Ser-1161' that create YWHAB and YWHAE binding sites and which contribute to the negative regulation of MAPK1/3 phosphorylation (By similarity). Phosphorylates EPHA2 at 'Ser- 897', the RPS6KA-EPHA2 signaling pathway controls cell migration (PubMed: 26158630). Acts as a regulator of osteoblast differentiation by mediating phosphorylation of ATF4, thereby promoting ATF4 transactivation activity (By similarity). **Cellular Location** Nucleus. Cytoplasm **Tissue Location** Expressed in many tissues, highest levels in skeletal muscle ### RSK2 (RPS6KA3) Antibody (S369) - Protocols Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - <u>Immunohistochemistry</u> - Immunofluorescence - Immunoprecipitation - Flow Cytomety - Cell Culture # RSK2 (RPS6KA3) Antibody (S369) - Images Formalin-fixed and paraffin-embedded human skeletal muscle tissue reacted with RPS6KA3 Antibody (S369) (Cat.#AP7286b), which was peroxidase-conjugated to the secondary antibody, followed by DAB staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated. # RSK2 (RPS6KA3) Antibody (S369) - Background RPS6KA3 is a member of the RSK (ribosomal S6 kinase) family of serine/threonine kinases. This kinase contains 2 non-identical kinase catalytic domains and phosphorylates various substrates, including members of the mitogen-activated kinase(MAPK) signalling pathway. The activity of this protein has been implicated in controlling cell growth and differentiation. Mutations in the gene for this protein have been associated with Coffin-Lowry syndrome (CLS). # RSK2 (RPS6KA3) Antibody (S369) - References Cho,Y.Y., J. Biol. Chem. 282 (11), 8380-8392 (2007) Wissing,J., Mol. Cell Proteomics 6 (3), 537-547 (2007)